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DIFFERENTIAL IDEALS1

D. G. MEAD

0. Introduction. In this paper we investigate the membership of

power products in certain differential ideals. The questions examined

were motivated by results by Levi,2 which we use extensively. Levi

has obtained for [yp] and [uv] sufficiency conditions for membership

of a pp. in the ideal, which tests membership, in certain cases, by a

calculation using only the weight and degree of the pp. In Theorem IV

we show that a more refined criteria is required for the determination

of membership of a pp. in [yp]. Whether a necessity criteria for mem-

bership of a pp. in [uv] will require more information than the weight

and degree of the pp. is not known.

Levi has also shown that the totality of pp. in u and v are divided

by a single calculation into three nonempty sets: the a-terms, which

are outside the ideal [uv], another set all of whose members are in the

ideal, and a third set concerning whose elements membership in the

ideal is undecided. The number of elements known to be outside the

ideal is increased by Theorem II, and a dependence of the set of ele-

ments whose membership in [uv] is undecided upon one of its proper

subsets is demonstrated in Theorem III. Carrying out the reduction
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1 The nomenclature and notation are as in J. F. Ritt's Differential algebra, Amer.

Math. Soc. Colloquium Publications, vol. 33, New York, 1950.
* H. Levi, On the structure of differential polynomials and on their theory of ideals,

Trans. Amer. Math. Soc. vol. 51 (1942) pp. 532-568.
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process, obtained by Levi, for [uv] will provide a positive answer for

membership or nonmembership in the ideal of any particular pp. This

process, usually requiring many computations to determine certain

critical coefficients can be simplified by the results in our first section.

It is shown that some of the coefficients can be predicted through use

of the derivative subscripts alone, without carrying out the steps of

the reduction. We also obtain, and in the last section utilize, a similar

simplification of the reduction process for [yp].

1. Invariance theorems. A basic procedure in Levi's reduction

process is the attainment of a congruence relation (1) P= — ^g Qi

where the g are quotients of binomial coefficients. P and Qi are either

pp. in the y,- and the congruence is modulo [yp] or they are pp. in u

and v and the congruence is modulo [uv]. We give a brief description

of how this congruence relation is obtained for the case [uv].

If P = UiVjR, where R is a pp. in u and v, we use (mz>)»'+/

= ^2a-us=i+i datpuavp where d«,0 = Caa"w to obtain 0=R^,da,p uavB

(modulo [uv]). (Ca1*4"3 is the binomial coefficient.) Thus RuiVj

= —R{^a+B-i+i-a^i CajUaVfi) (modulo [uv]) where ca,B = Caa+fi/Cii+i.

It is the last congruence which is used in the reduction process.

Before presenting statements and proofs of the theorems, we in-

troduce and define the pertinent terms. The transition from P to

— CiQi, any term on the right of the congruence (1), is called the step

which starts at P and ends at Qi. The step which starts at P and ends

at Qi is also called a path of length one—a path which starts at P

and ends at Qi. Assume paths of length k have been defined. Take a

path of length k which starts at P and ends at S, with the coefficient

of 5 being c. There exists a congruence relation, obtained as described

above: e.S= — ^,c't Ti. The transition from P to — c[Ti, any one of

the terms of the congruence, is called a path of length k-\-l—a path

which starts at P and ends at Ti. The concepts of step and path for

[yp] and [u\Ui ■ ■ ■ uv] are defined analogously. We first turn our

attention to the latter ideal.

Let R=Uifi1uiiil ■ ■ ■ up,ipU and T = u1,hu2,jt • • • uv<ivU, where U

is a pp. in Mi, w2, • • • , up and zla-i i*= Sa-ii«- The first multiplier

of the step which starts at R and ends at J1 is:

nt(R,T) = fl(ial)/fl(j^.

The second multiplier of the same step is M(R, T) = — 1. The first

(second) multiplier of a path is the product of the first (second)

multipliers of the steps which compose the path. The relation between
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multipliers and the coefficients arising in steps and paths is given in

the following lemma.

Lemma I. If there is a path which starts at R and ends at T, the coeffi-

cient of T, at the end of the path, is m(R, T) M(R, T).

Proof. Let R and T be the pp. defined above and let n = X^=i *'<«.

Since (uiU2Uz ■ ■ ■ up)n = cui,ilu2,it • • • uv,ip+c'ui,h ■ ■ ■ Mp.^+other

terms, where

c  = c ,•    ■ ■ • t i,   =->
CjiO • • • ovo

a—1 a-1

(note dp = d'P = n), the coefficient of T after making the step is seen to

be:

-c'/c=-((ii\) ■ ■ ■ (t,!))/(0'i!) • • • (jP\))=m(R,   T)M(R,   T).

An induction yields the corresponding result for paths of any length.

Theorem I. m(R, T) is independent of the path.

Let 2?=«b?«iVi • • • «&T «fe" I& • • • *& • • • «&° • • • «fcf and
T = u{\$ • " " mm - - ' «£;>"-1 «£";," where the total weights are the

same, and for each i, the degree of R in «, is the same as the degree

of T in «,-. It will be shown that:
p p

(i)    *(*, r> - n {(«o£*"i / n {(«o&''"}.
u-l ' a=l

The proof employs induction on the length of the path from R to T.

Lemma I provides the proof for paths of length one. Assume (1)

is correct for all paths of length less than /, and take any path starting

at R and ending at T of length t. For the proper choice of ki, • ■ • , kp

and mi, ■ • • , mP, the first step of the path yields

_ »1.0 H.k-1    »"l.ti+l *S.ti_1       «2,*j + l Htp-1     «j>-*j>+1

Q = Wi.o   • • • Ml,*!     Ml,*H-l   • ' " «2,fc2     «2,t2+l   • ' - Up,kp     Up,kp+1

for which m(R, Q) = Jig k& = Yl$ m&- The path from Q to T contains
only /—1 steps, and (1) is assumed valid for such paths.
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V V

m{Q, T) = [ ft {(a!) ?*"} / ft {(«!)V'"}] ft fol) / ft (W).
L a=l '        a=l J fl=l '        fl-1

For (3 = 1, ■ • ■ , p the exponent in Q of uB,k? is iB.kfi— 1, not t's,^, and

the exponent of m?,^ is tV.m^ + l, not ip,*^', thus in the numerator of

the first factor of m(Q, T), the exponent of each of (hi), (k2l), • • • , (kp\)

is one too large and the exponent of (mi!), (m2!), • • • , (mp\) is one

too small. From the definition of the first multiplier of a path:

m(R, T) = m(R, Q)m(Q, T)

iim ,_      a.     „    *. ., n(««.o
= ̂— [n {(«o5"i / n {(«fr'i] -p-

ik-mo a=1 nc*.o

The proof of the lemma has been completed.

We turn to [yp] and establish the corresponding results concerning

the invariance of the first multiplier for paths with fixed end points.

Let R=y°\y% ■ ■ ■ y%Y and T = y% • ■ ■ y)*Y where Y is a pp. in the

y%, p = ]Ca o-a = 2" &«i no two OI the in are the same and no two of

the jk are the same. The first multiplier of the step which starts at R

and ends at T is: m(R, T) = [ft!)"1 ■ ■ ■ (ij)a"]/[(jil)bl • ■ • (jn !)*»]•

Note that this is what is obtained from the first multiplier as defined

for U\U2 ■ • ■ Up if no distinction is made among the u's. The second

multiplier of the step which starts at R and ends at T is: M(R, T)

= - IE (««!)/ II" (bJ).
The first (second) multipliers of a path is the product of the first

(second) multipliers of the steps which compose the path. The rela-

tionship between multipliers and coefficients arising in steps and

paths is given in the following lemma.

Lemma V. If there is a path which starts at R and ends at T, the

coefficient of T at the end of the path is m(R, T)M(R, T).

Proof. Let R and T be the pp. defined above, with /= ^^S-i ada

= Z"-i baja. In the expansion (y>)/=cy% ■ ■ ■ y%+c'y% • • • y\

+ other terms, yp can be considered a specialization of «iw2 • • • up in

which all the m's are the same. The coefficients c and c' are the

coefficients of any one of the corresponding terms in «i, • • • , up

multiplied by a suitable binomial coefficient. Thus:

c =_11_cV"1 • • • cdj



424 D. G. MEAD [June

and

r> - /! rd'°       r"'*
C    — t/i      •  •  • C 6,

C/iO1* • • • (i.0*

where 4= 2*-i «« and d't= 52*_x &a. (Note that dp—d'P = n.) It is
easy to see that

/!             (<*.»)              .     ,            /!             WO
c =-and   c  =-■—-— •

a=>l a=.l a==l a«=l

The coefficient of T after making the step is —c'/c = m(R, T)M(R, T).

An induction proof provides the corresponding result for paths of

any length.

The second invariance theorem is analogous to Theorem I.

Theorem V. m(R, T) is independent of the path.

Since the definition of the first multiplier for [yp] is obtained from

the corresponding definition for [ui • • • up] by associating the m's,

the proof of Theorem I' can be obtained from that for Theorem I by

the same specialization.

2. A dependence theorem. Levi has shown that all pp. of the form

Ui^i, ■ ■ ■ uinvh • • ■ »y, with »gji^ • • • ?Zjt are not in [uv]. A larger

set of pp. whose nonmembership in [uv] can be determined by a

single calculation is obtained in the following theorem.

Theorem II. P = u'uiluil • ■ ■ uin(v,)T(£ [uv] ifr^ii^ ■ ■ -^in.

It will be shown that P = au'Ui^r ■ • ■ Uin-r(v,+n)T+hT (mod [uv])

where a is a nonzero rational number and hT represents a linear com-

bination of terms higher than the pp. T = u'Uil-r • ■ ■ w,-„_r(n,+„)r.

Since T is an a-term, the fact, to be proved, that a is not zero will

imply that P(£[i«i]. Throughout this section all congruences are

modulo [uv], and the subscripts ti, • • • , in are assumed fixed and to

satisfy r^ii^ • • -^in.

Lemma I. u'Ui^r • • • Uij-rVk^hT or 0 when k<j+s.

Proof. If 5 = 0, the smallest value possible for j is 1, and £=0. We

find Uix-Tv= — YfiZlCkUit-T-kVk. This case is completed by observing

that since ife>0, every term of the sum is higher than T.

If 5>0 and j = 0, the pp. contains WVk with &<s, and it is known

that such pp. are in the ideal. We continue the proof, using induction

on j. Assume the lemma true for all values less than j. By means of
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the reduction process:

U'Uit-r • • • Ui--rVk

— ]£ c* Uif-r-ffii+i —   ]C C< Uif-r+iDh-i ) •
t=l »=l /

Every term of the first sum is higher than T, and every term of the

second, by the induction hypothesis, is congruent to zero or a linear

combination of terms higher than T. The proof of the lemma is com-

plete.

Lemma II. // i^O, «'«,•,_,• • • ■ M,-/_1_r«,J._r+9_i(o,+3_1)a+1=fer or 0

for g^O.

Proof. For g = 0andt = 0, this is Lemma I. If g = 0 andi>0 the pp.

is higher than T. Assume the lemma valid for all values less than q

(with any i^O).

tt*Wfl-r • • • M<J_1_rMVy_r+a_,D,+y_i(!;,+y_i)«

[ij—r+g—i

—       X^       CkUij-r+s-i-.kV.+j-i.+k
k—1

s+j-1 "I

—     2_,     c* uij-r+t-ii-*"«+/-l-*    •
fc=i J

Every term of the first sum, by induction, and every term of the sec-

ond, by the preceding lemma, is congruent to zero or hT. The conclu-

sion of the lemma is satisfied.

Lemma III. There is a nonzero rational number a for which:

U'Ui.-r ■ ■ ■ Mi._1_rM,V_a(^),+y_l)r-9(^/,+l)a,

= au'Uf.-r • • ■ «f,._1_r«<]._g_i(n,+J_i)r-«-1(»«+y)a+1 + hT.

Proof.

U'Ui^r ■ ■ • Uii_1-r(UijV,+j-i)(v,+]--1)'-''-1(v.+j)'>

[•+1-1

-   Z)   c,-«fi_g+,-».+J_,_i

*f« "1
—   Z-t C'i Uij-l-ill'+j-l+i     ■

i-1 J

By the first lemma, every term of the first sum is congruent to zero or

hT. Every term of the second for which i = 2, 3, ■ • ■ , i, — q is, by the

second lemma, congruent to hT or zero, and c[ as the quotient of

binomial coefficients is not zero. This gives us our result.
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Corollary. «*«<!_, • • ■ M,y_1Mij.(»(,+j_i)r = aM*Mtl_r • • • Miy_r(t;8+J)r

+hT, with a^O.

The corollary can be obtained by an r-fold application of the last

lemma, and the proof of the theorem is completed through an w-fold

iteration of the corollary.

3. A dependence theorem. The sufficiency condition which Levi

obtains for membership in [yp] and [uv] is that the weight must be

small with respect to the degree. For [uv] the weight must be less

than di ■ d2 where (di, d2) is the signature of the pp. Thus for each pair

(di, d2) there exists a critical weight such that any pp. of signature

(di, d2) and weight less than the critical weight automatically lies in

the ideal.

Let P be a pp. in u and v of signature (di, d2). For all possible pairs

(di, d2), where 1 =dr ^di and 1 ̂ di ^d2, we consider the weight of

the factor of P of least weight and signature (di, di), minus di ■ di

(the critical weight). This set of numbers we call the weight sequence

of P. If all the numbers of the weight sequence are non-negative, we

say that P has a non-negative weight sequence. The weight of P

minus di ■ d2 is called the excess weight of P.

Theorem III. If no pp. with a non-negative weight sequence and ex-

cess weight of zero is in [uv], then no pp. with a non-negative weight

sequence is in [uv].

Let w(P) = weight of P and g(P) = did2, where (di, d2) is the sig-

nature of P.

Lemma I. If P — UkQ and P is of signature (di, d2), then w(P) —g(P)

= w(Q)-g(Q)+k-d2.

Proof. w(Q)=w(P)-k and g(Q) = (di~l)-d2 = g(P)-d2. Thus

w(P)-g(P)=w(Q)-g(Q)+k-d2.
Let the M*-part of P be the pp. obtained by deleting from P all the

v's, and all the My with j^&, and let thea-part of P be the pp. obtained

by deleting all the m's from P.

Lemma II. Given a pp. P (involving at least one v,) with a non-nega-

tive weight sequence, there exists a pp. T such that:

(i) PT has a non-negative weight sequence.

(ii) There is a factor Rof P with the v-part of R the same as the v-part

of P, and the excess weight of RT equal to zero.

Proof. Let (dx, d2) denote the signature of P. Write P = RU, where

U   involves   only   udl,   ud,+i, • • •    and   no   v's,   and   R,   free  of
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u&v udi+i, • • • , is of signature (d{, d{); of course d2 = d2. We assume

P involves a «,- with j<d2 (i.e. d{ >0) since it is known that if P

lacks such a u,, P(£[uv]. (udi-i)w<-R)~oim satisfies the conditions of T

in the lemma. The second part of the conclusion will be demonstrated

first, with the R and T already introduced.

w(RT) = w(R) + (w(R) - g(R))(d2 - 1)

= d2w(R) - d2g(R) + g(R),

g(RT) = idi + w{R) - g{R))d2 = d{ ■ d2 + d2w(R) - d2g(R)

- g(R) + d2w(R) - d2g(R).

The second condition is satisfied.

We now show that PT has a non-negative weight sequence. Let 5

be any factor of PT with a minimum excess weight. The assumption

that this excess weight is negative will produce a contradiction.

If the u-part of S were not the same as the z>-part of PT, S would

contain at most d2— 1 v's. After the deletion of all udi-i from S, which

the preceding lemma informs us will not increase the excess weight, a

pp. S', which is a factor of P, is obtained. Since the excess weight of

S' is non-negative (P has a non-negative weight sequence) the same

must be true of 5. Consequently, if the excess weight of 5 is to be

negative, the z>-part of S is the same as the fl-part of PT.

The udi part of S is identical with the wj, part of PT. Deletion of

all My with j^d2 will not increase the excess weight. If 5 did not con-

tain all the Mi in PT, with i<d2, the addition of these m,- would de-

crease the excess weight. These deletions and additions, however,

yield RT, which has an excess weight zero. Thus if 5 is to have a

negative excess weight, the udl part of 51 must be the same as the udl

part of PT. Similarly .S cannot involve a Uj with j>d2. S can only

differ from RT by terms udi, the addition or deletion of which do not

affect the excess weight of the pp.

It has been shown that the minimum excess weight of any factor of

PT is not negative, i.e. the weight sequence of PT is non-negative,

and the proof of Lemma II is complete. We now return to the proof of

the theorem.

Take any pp. P, of signature (d\, d^), with a non-negative weight

sequence. There is a pp. T involving only m's such that PT has a non-

negative weight sequence and a factor R of P such that RT has zero

excess weight.

Let (ri, r2) be the signature of RT. There being but one a-term of

weight w(RT) and signature (ri, r2), namely uri(uri)r2, RT = cuTl(uri)ri

mod [uv]. The hypothesis of the theorem is the statement that c^Q.
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P= UR, where U involves only udv Ud2+l, • • • ', but as was seen in

the previous section, the adjunction of such factors, as in U, to

ur,(uri)r* with r2=d2, does not enable the result to become a member

of the ideal.
P after multiplication by T is not in the ideal, hence P cannot be a

member. It may thus be sufficient to examine with reference to

membership in the ideal those pp. which have a non-negative weight

sequence and an excess weight of zero.

4. Unusual pp. in [yp]. To demonstrate the need for a criteria for

memberhip of a pp. in [yp], more refined than any test which con-

sists of a single calculation in terms of the weight and degree of the pp.,

it will be sufficient to consider [y2]. The manner in which this will be

demonstrated may be stated more precisely following some conven-

tions of notation. If P=yil ■ ■ ■ y,n where the *,• are monotonically

increasing, (ai, • • ■ , an) is called the weight sequence of P and an

the excess weight of P, where aj= (^2i-i ik) — (j)(j—l). (We recall

that for [y2] the critical weight function w(2, d)=d(d—l).) Due to

the monotony of the subscripts of the y's, a<+1 — a^a — aj_i — 2 for

i = 2, ■ ■ • , n — 1. With these restrictions on the sequences, there is

a one-to-one correspondence between weight sequences and pp. in yy.

In what follows, a pp. and its associated weight sequence are used

interchangeably, and all congruences are modulo [y2].

The sufficiency test of Levi is that one of the entries of the weight

sequence be negative. This condition is not necessary, as is shown by

the following theorem.

Theorem IV. A pp. with a weight sequence consisting of O's, l's and

2's will be a member of [y2] if and only if somewhere in the sequence at

least one of the following patterns appear:

1,2,2,1;    1,2,2,2,2,0;    0,2,2,2,2,1;    0,2,2,2,2,2,2,0.

The proof is divided into five lemmas which are preceded by some

general remarks concerning steps and paths for [y2]. In making a

step, we use one of the two expansions;

i

(y2)n - X) cjyi-iyn-i
3-0

where, for j = l, • • • , *, Cj = 2Cf and co = Cq4,

i

(y2)s*fi = ]C dyy,wyi+i+y
i-o

where, for all j, a"y = 2Cf+1. All coefficients except Co are twice a bi-
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nomial coefficient which means that most second multipliers are

minus one, while —2, and —1/2 are the second multipliers for steps

which respectively start and end at (yi)2.

Let P be any pp. with excess weight zero or one. Since there is a

unique a-term A with the same degree and weight as P, P=cA

(mod [y2]), with c a rational number. m(P)=c/m(P, A) will be

called the multiplier of P, where m(P, A) is the first multiplier of a

path which starts at P and ends at A. Let 5^. be the fixed set of paths

which occur in any specific reduction of P. From Lemma I' of the

first section, it is clear that m(P) is the sum of the second multipliers

of all the paths in <rv Since PG[ys] if and only if this sum is zero, it

will be sufficient when carrying out a reduction to take note of the

second multipliers of the paths which arise in the particular reduction

developed.

Lemma I. m{a\, ■ • • , c„, 0) =m(0, ■ • • , 0, au ■ ■ ■ , a„, 0) [t zeros

before Ci].

Proof. yi^y^i, ■ ■ • ytn+l has the weight sequence (ci, • • • , c„, 0)

if ij = 2(j— 1) +Oy—Of-i; and yy,i+2 • ■ • y.„+2 has the weight sequence

(0, d, • • • , an, 0). If (ci, • • • , an, 0) = — 23c«'(?»-. let (?•'. for each i,
be the pp. Qi with the derivatives of each y increased by two.

(di, • • ■ , dn, 0) being the weight sequence of Qi, the weight sequence

of yQi is (0, di, • • • , dn, 0) and (0, au ■ ■ ■ , a„, 0) m —y( ]£e/ £),■) for

suitably chosen constants ci. Since M((ai, • • • , a„, 0), Qi)

= M((0, au ■ ■ ■ , an, 0), Qi), m(au • • • , c„, 0) =m(0, au ■ ■ ■ , an, 0).

An induction proof provides the justification of the statement of the

lemma.

Corollary. m(au ■ • • , at, 0, • • • , 0, fa, • • • , bn, 0) [k zeros be-

tween at and bi] =m(au ■ • ■ , at, 0)m(fa, •••,&„, 0) for k>0.

From the definition of the multiplier of a pp., and there being a

unique a-term for each degree of excess weight zero: (<ii, • • • , o»,

0, • • • , 0, fa, ■ ■ • , bn, 0) [k zeros between at and fa]=m(ai, • • • ,

at, 0) (0, • • • , 0, fa, ■ ■ ■ , bn, 0) [t+m zeros before fa]=m{a\, • • • ,

a,, 0) m(fa, ■ ■ ■ , bn, 0) (0, • • • , 0) [t+k+n + l zeros]. Therefore,

m(a\, • • ■ , at, 0, • • • , 0, fa, ■ ■ ■ , b„, 0) [k zeros between at and fa]

= m(a1} ■ ■ ■ , at, 0)m(fa, • ■ ■ , bn, 0).

A t=MgBi where the A and Bi are pp. will be used to mean that

M(A, Bi) =g and A m Y,{gm{A, Bi)Bi).

Lemma II.  (i) m{\, ■ ■ ■ , 1, S, 0)   [n ones before 5] = (-l)n~1

•m{\, S, 0) for any sequence S.

(ii) m{S, l) = ( — l/2)m(S, 1, 0) for any sequence S.
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Part (i) is true for » = 1. P=yxy2 ■ ■ ■ has a weight sequence

(1, • • • , 1, S, 0) [n ones before S] and P^sM—yy3 • ■ ■ which has the

weight sequence (0, 1, • • • , 1, S, 0) [n — 1 ones before S]. Thus

m(l, ■ ■ ■ , S, 0) [n ones before S] = -m(0, 1, ■ ■ ■ , 1, S, 0)[»-l

ones before S] = -(-l)»~2m(l, S, 0) = (-l)"-'w(l, S, 0).

For part (ii) let S=(ai, • • ■ , a„). There is a unique a-term of

degree n + 1 and excess weight one, namely, yy2y4 • • • y2n-2y2*+i.

Thus (au • • • , an, 1) =Mkyy2 ■ ■ ■ y2n-2y2n+i. However (ai, • • • , a„, 1)

•y2n+i has the weight sequence (ci, • • • , an, 1, 0); and (au • • • , an,

1, 0)=Mkyy2 ■ ■ ■ y2n-2yl„+i = Mk(-2)yy2 ■ • ■ y2ny2n+2. Thus m(alt

■ ■ • , an, 1, 0) = —2k and k = m(ai, • • • , a„, 1) = (—l/2)m(au ■ • ■ ,

a„, 1,0). The demonstration of the lemma is complete.

We also note that m(ai, • • ■ , an, 0) =m(an, a„_i, • • • , au 0). The

proof consists in noting that the mapping y~»y2n+2-i provides a

transition from the first pp. to the second, as well as a transition from

an Af-congruence relation ( = M) used in the reduction of the first pp.

to a valid Af-congruence relation for the second.

It will be necessary to use the following multiples:

(i)   »(1, 0) = 2, (iv)   m(2, 2, 0) = -6,

(ii)  m(l, 2, 1, 0) = -4, (v)  nt(l, 2, 2, 1, 0) = 0.

(iii)   m(l, 2, 2, 0) = 4,

(i) y\ has the weight sequence (1, 0). y\ = M — 2yy2 or m(l, 0)=2.

(ii) yiy^ has the weight sequence (1, 2, 1, 0). yiyB(y3)2 = Myiy6

(— 2yiy6 — 2y2y4) or in terms of sequences, (1, 2, 1, 0) =M — 2(1, 0, 1, 0)

-2(1, 1, 1, 0). Hence m(l, 2, 1, 0) = -2-4-(2(-2)) = -4.
(iii) y\y%y\ has the weight sequence (1, 2, 2, 0). yiy3(y4)2 = Jlfyiy3

(-2y2y6-2y3y6), or (1, 2, 2, 0)s"-2(l, 1, 0, 0)-2(l, 2, 1, 0). Hence

m(l, 2, 2, 0) = -2-2-2(-4)=4.
(iv) yl has the weight sequence (2, 2, 0). y2(y2)i = My2( — 2yyi

-2yiys), or (2, 2, 0)=^-2(0, 0, 0)-2(l, 1, 0). Hence m(2, 2, 0)
= -21-2-2--6.

(v) yiy-iycyby-i has the weight sequence (1, 2, 2, 1, 0). yiy3y7(y4yB)

=Afyiy3y7(-y2y7-y3yc), or (l, 2, 2, l, 0)=*-(l, l, o, l, o)-(l, 2, l,

1, 0). Hence m(l, 2, 2, 1, 0) =-2(-2)-(-(-4)) =0.
Here we encounter a "peculiar" pp., one with a non-negative weight

sequence, which is in the ideal. The presence of the pp. in the ideal is

sufficient to indicate that for [y2] the methods of the previous section

will not suffice. We continue in order to characterize the "peculiar"

pp. which have small positive entries in their weight sequences.

Let m(l, 2i, 22, • • • , 2„, 1, 0) =/2(a) [where 2< = 2], m(2i, 22, • • • ,
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2a, 1, 0) =/i(a) [where 2< = 2] and m(2x, 22, ■ ■ • , 2a, 0) =/o(a) [where

2,-= 2]. Due to the inequalities the entries in a sequence must satisfy,

we note that/o(a) and/i(a) are defined only for o^2.

Lemma III.

(i) For  a^3: f2(a)=2f1{a-l)+f2(a-l)   and /x(a) = -2/i(a-l)

-2/2(a-l).

(ii) Ma)=2Ma-2) for o^4, and f2(a)=4f2(a-3)+f2(a-l) for

(iii)/i(fl)=2/0(a-l)+/i(a-l) and /0(o) = -2/0(a-l)-2/1(o-l)

for a ^ 3, and fo(a) = 2/i(a — 2) /or a S: 4.

Proof of part (i). (1, 2i, 22, • • • , 2a, 1, 0) [where 2< = 2] is the

weight sequence of yiy3y4ye • • • . (yay^yrye • • • = Myiye • • ■ (—yiye

-yon), or (1, 2i, 22, • ■ • , 2., 1, 0)s*-(l, 0, 2,, 22, • • • , 2a^, 1, 0)

-(1, 1, 2i, 22, • • • , 2a_i, 1, 0) [where 2.=2]. Thus m(l, 2U 22, • • • ,

2., 1, 0) = 2m(2i, 22, • • • , 2„_i, 1, 0) +i»(l, 2U 2,, • • • , 2_1, 1, 0)

[where 2< = 2] or f2(a) =2/i(a-l)+/i(o-l). (2i, 2,, • • • , 2., 1, 0)

[where 2i = 2] is the sequence of yj^u • • • . (yl)y4 ■ • • = My4 ■ • •

(-2yy4-2yiy3), or (2U 22, • • • , 2., 1, 0) sb*-2(0, 21( 2,, • • • , 20_!,

1, 0)-2(l, 2i, 2,, • • ■ , 2_i, 1, 0) [where 2; = 2]. Thus /,(a)
= -2/i(a-l)-2/2(a-l).

Proof of (ii). Ma) = -2/i(a-l)-2/2(a-l) = -2(-2f1(a-2)

-2/1(a-2))-2(2/1(fl-2)+/*(a-2))=2/,(o-2). /,(a)=2/1(o-l)

+/1(a-l)-2(2/,Ca-3)+/,(o-l))-4/,(a-3)+/,(a-l).
Proof of (iii). yiy3y4ye • ■ •  has the sequence (1, 2i, 22, ■ • ■ , 20, 0)

[where 2< = 2]. yiy6 • • • (y3yd = ^yrye • • • (—yry«—y2y6)   or   (1,  2i,

22, • • • , 2„, OJ-'-fl, 0, 2i, 22, • • • , 2_i, 0)-(l, 1, 2i, 22, • • • ,
2a_i, 0) [where 2, = 2]. Thus m(l, 2i, 22, • • • , 2„, 0) =2m(2u 22, • • • ,

2o_i, 0)+w(lf 2i,  2„ • • • ,  2„_1, 0)  and w(l,  2i,  22, • • • ,  2., 0)

= «(21( 22, • • • , 2., 1, 0)=/i(a)=2/0(a-l)+/i(a-l) [where 2, = 2].
y|y4 • • • has the sequence (2i, 22, • • • , 2„, 0)  [where 2j = 2]. (y2)y4

. . .   muyt . . . (-2yyi-2y1y3) or (2i, 22, • • • , 2., 0)^^-2(0, 2lf

22, • • ■ ,  20_i, 0)-2(l, 2i, 22, • • • ,  2a-!, 0)   [where 2< = 2]. Thus

fo(a) = — 2/0(a— 1)— 2/i(a— 1). From the previous results it is easily

seen that f0(a) =2/i(a-2). With these facts we find:/2(3) =8,/x(3)

= -8,/2(4) = -8and/o(3)=4.

Lemma IV. f2(a) =0 if and only if a =2, fi{a) =0 i/ and only if
a=4, and/o(a) =0 if and only if a = 6.

Proof. For a^5,/2(a) =23odd number, and thus does not van-

ish. It is known that /2(5) =4/2(2)+/2(4) =4-0 + (-8) =23(-l).

Then  by induction: f2(a) =4f2(a-3)+f2(a-l) =4-23odd+2'odd
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= 23odd number. With the computation of f2(l), f2(2), f2(3) and

/2(4), we are able to conclude that/2(a) vanishes if and only if a = 2.

Noting  that /i(2)^0,   and /x(a) =2/2(a-2),   we  conclude  that

/i(a)=0 if and only if a =4. In the same manner, /0(2)^0, f0(3) ^0

and/o(a) =2/i(a —2) imply that/o(a) =0 if and only if a = 6.

Lemma V.
(i) m(l, 2i, 22, • • • , 20„ 1, 2i, 22, • • • , 2„„ 1, • • • , 1, 2i, 22, • • • ,

20n, 1, 0) [where 2i = 2] = (-l/2)*-1]I?-i/2(a.)-

(ii) m(2u 22, • • • , 201, 1, 2i, 22, • • • , 2a„ 1, ■ ■ ■ , 1, 2U 22, • ■ ■ ,

20„, 1, 0) [where 2i = 2] = (-l/2)"-lf1(ai)Jl^2f2(ai).

(iii) m(2i, 22, • • • , 201, 1, 2i, 22, • • • , 2aj, 1, • • • , 1, 2U 22, • • • ,

2a„, 0) [where 2i = 2] = (-l/2)»-lf1(a1)fi(an) ■ II"-J/*(<**) «**« »>1.

Proof. We use the fact that for each degree there is only one

a-term of excess weight equal to one, in conjunction with (ii) of the

second lemma.

Part (i) is true if n = l. For larger values: m(l, 2i, 22, • • • , 20„ 1,

2i, 22, • • • , 2av 1, ■ ■ ■ , 1, 2i, 22, • • • , 2OB, 1, 0) = (-l/2) m(l, 2U

22, ■ ■ ■ , 2aiI 1, 0) [where 2< = 2], m(l, 2U 22, • • • , 202, 1, • • • , 1,

2x, 22, •••, 2a„, 1, 0) [where 2< = 2] =(-l/2)/2(a1)(-l/2)«-2

■US-Mat) = (-1/2)—i Ilti/iCo*)-
The proofs of (ii) and (iii) are carried out in a similar fashion.

Reference to the corollary of Lemma I, part (i) of Lemma II and

Lemmas IV and V provide the demonstration of the theorem stated

at the beginning of the section.
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