COMMUTATIVE RESTRICTED LIE ALGEBRAS!
N. JACOBSON

A Lie algebra of characteristic p0 is called restricted if in addition
to the usual compositions one has defined a unary operation a—al?!
such that

(aa) Pl = aqralr] a in the base field,

[a, b[ﬂ] = [ T [ab] T b]v (P b’S)
(a + b) [p] = glr] 4 plr]l pii s‘(a’ b),

where is;(a, b) is the coefficient of A~! in
[« [[a,xa+bNa+ 0] - Na+b]? (p — 1 (\a + b)’%s).

Examples of such algebras are subspaces of associative algebras of
characteristic p0 which are closed under the Lie multiplication
[ab]=ab—ba and under pth powers. Then one may take a!?! =a». It
is known that every restricted Lie algebra is isomorphic to one of this
type. For this reason we may simplify our notation in the sequel and
write a? for a!?!, We call the mapping a—a? the p-operator in L.

We shall call a restricted Lie algebra £ commutative if [ab]=0 in Q.
These algebras play an important role in the theory of simple re-
stricted Lie algebras since in all known examples every such algebra
contains a commutative (restricted) Cartan subalgebra. Moreover,
Zassenhaus has shown recently that if 8 is a Lie algebra of character-
istic 0 which has a representation with nondegenerate trace form,
then the Cartan subalgebras of ¢ are all commutative. The present
author has extended Zassenhaus’ result to show that if  is restricted
and has nondegenerate trace form in a (restricted) representation,
then the Cartan subalgebras are also semi-simple in the sense defined
below. These results and some of those contained herein will be used
in a forthcoming paper by G. Seligman on the classification of simple
restricted Lie algebras which admit nondegenerate trace forms.

1. In defining subalgebras, ideals for a restricted Lie algebra, one
requires closure with respect to the p-operator as well as the usual
closures relative to the other compositions. Similarly, homomor-
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1 The results of this paper were presented at the Summer Conference on Lie
Groups and Lie Algebras (1953) sponsored by the American Mathematical Society
under a grant from the National Science Foundation.

2 See [3] for the definition and results stated without proof in this paragraph.
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phisms are required to commute with the p-operator. If  is commu-
tative, the conditions on the p-operator reduce to

(a + b)? = a» 4 b7, (aa)? = arqr.

Thus the p-operator is a semi-linear transformation relative to the
isomorphism a—a? in the base field ®. Since  is commutative every
subalgebra is an ideal and these are just the subspaces invariant under
the p-operator. In fact, it is clear that the study of  is equivalent to
that of the given semi-linear transformation.

From now on we suppose { finite dimensional and ® perfect. The
latter condition implies that a—a? is an automorphism.

An element aEQ is nilpotent if a**(=(a?"")?)=0 for some k=0
and a commutative £ will be called semi-simple if it has no nilpotent
elements 0. It is clear that ® is semi-simple if and only if the p-
operator is an onto mapping in 2. Fitting’s lemma gives a decomposi-
tion of R=2,®Y where every element of ¥, is nilpotent and & is
semi-simple.

Consider now, more generally, any semi-linear transformation T
in a finite dimensional vector space £ and denote the associated
automorphism in ® by o. To study the decomposition of { relative
to T one introduces the polynomial ring ® [, o] of formal polynomials
in ¢ with coefficients in ® such that at =ta?, « €®. ® can be regarded as
a ®[t, 0]-module? The theory of these modules shows that we can
decompose € as a direct sum of cyclic subspaces [x;]® [x;]® - - -
® [x,]. Here [x:] is the space spanned by the vectors x;, x:T,
x;T2, - - - . If a; denotes the polynomial of least degree #; and leading
coefficient 1 such that x;a;=0 then (x;, x;T, - - -, x;T*"1) is a basis
for [x:]. It is known that we can choose the x; so that a; is a total
divisor of @iy, in the sense that there exists a two-sided ideal af®[¢, o ]
so that

e:8[t, 0] 2D @:dt, 0] D aer1®[t, ol.

If  is a restricted Lie algebra, then we shall call £ ¢yclic if it has a
basis of the form (a, a?, a?*, - - -, a*" ™). The polynomial u(f) of least
degree (leading coefficient 1) such that au(¢) =0 is called the order of
the generator a. If u(t) =¢"— "oy —t" 23— + - - —a, then we have
the relation

€)) a™ = a1 4 aa?™ 4+ - - - + ana.
The result indicated is that any commutative restricted Lie algebra

3 [2, p. 29]. The arithmetic of the polynomial domain ®[¢, o] where ¢ is the auto-
morphism a—a? has been considered by Ore in [4].
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is a direct sum of cyclic ones and the orders can be chosen as indi-
cated.

We now distinguish two cases: ¢ of finite order and ¢ of infinite
order. For the p-operator these correspond, respectively, to ® finite
and @ infinite. The theory for the first case is quite well worked out.
Moreover, for the applications to Lie algebras the case of an alge-
braically closed field is most important. Hence we shall assume in the
remainder of this section that ¢ is of infinite order. In this case it is
known that the only polynomials a* such that a*®|t, o] is two-sided
are the ®-multiples of the powers #*.* It follows that if T is non-
singular then =1 in the decomposition into cyclic subspaces. For
the p-operator this gives

THEOREM 1. Every semi-simple commutative restricted Lie algebra is
cyclic.

If ® is cyclic with generator @ whose order is u(f) =t*—t""'ay
— -+ —a,, then (a, a?, - - -, @) is a basis and a*"=aa*"™"
4aa?" "+ - - - +aga. It follows that the p-operator is an onto map-
ping if and only if @,70. Hence this is the condition on u(¢) that &

be semi-simple.

2. We shall now derive a condition that u(t) in ®[t, o] be divisible
on the left by t—a. For this purpose we set Ny(a) =1, Ni(a)
=aa’a’’ - - - a® . Then we have the following

LEMMA. t—a is a left factor of u(t) = D thux if and only if
Z Nk(a)uk = 0.
0

Proor. We have the identity
(t —_ a) (tlc—l _|_ tk—2a¢r"—l + tlc-aaaHach-l
+...+a¢...a‘7k) =t"—Nk(a).
Right multiplication by ux and summation on k gives

u(t) = 20 Na(@)ue = (¢t — a)Q(1).
The result is now clear.

We suppose now that ® is algebraically closed of characteristic p
and ¢ is the automorphism a—a?. Then Ni(a)=qltr+ -+
=a@*-DI=D and the condition that t—a is a left factor of u(¢) is that
a is a root of p(\) = Z)\(Pk‘”/ »=1y,.5 Thus the only irreducible poly-

+ [2, p. 38 and pp. 49-53].
5 This result is due to Ore [4].
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nomials in ®[t, o] of positive degree are the linear ones. A restricted
Lie algebra is called simple if and only if it has no proper ideals 0.
For commutative algebras this means that € has no proper subspaces
0 invariant under the p-operator. Our results show that this is the
case if and only if 2 is cyclic and the order of the generator is irreduci-
ble in ®[¢, ¢]. We can now prove

THEOREM 2. If ® is algebraically closed, then the simple restricted
commutative Lie algebras over ® are all one dimensional. There are just
two nonisomorphic types of such algebras.

Proor. If ® is simple commutative and ® is algebraically closed,
then the foregoing argument shows that & is generated by an element
a such that a? =aa. This implies the first statement. If =0, { is nil-
potent. Otherwise, we replace a by h=a~Y»-Dg and obtain h?=h.
The second statement is now clear.

We can now prove our main result.

THEOREM 3. If 8 is a semi-simple commutative restricted Lie algebra
over an algebraically closed field, then & has a basis (b, by - - -, hn)
such that B =h;, i=1,2, - - -, n.

Proor. In view of Theorem 2 the result to be proved is that 2 is
a direct sum of simple non-nilpotent subalgebras. Now it is known
that a cyclic space [x] relative to a semi-linear transformation is a
direct sum of irréducible subspaces if and only if the order a is a least
common right multiple of irreducible polynomials in ®[t, ¢].¢ The
result we require is therefore the following. Let & be algebraically
closed of characteristic ¢ and let ¢ be the automorphism a—a? in ®.
Then every polynomial u(f) = 3% thu with pe 50 is a least common
right multiple of linear polynomials in ®[t, ¢]. As before let u(\)
= Z)\(Pk‘n/ =1y, and let p(\)’ be the derivative of m(\). Then

BN = B — po.

Hence (x(\), x(\)’)=1 and u(\) has (p»—1)/(p—1) distinct roots
a; (#0). It follows that u(f) has exactly (p»—1)/(p—1) linear left
factors t—a;. Since u(t) is a product of linear factors we can write
w(t) =v(t)(t—c). Since »(2) is of lower degree than u(t) the result just
obtained shows that u(t) has a left factor t—8 which is not a left
factor of »(f). Hence p(f) is a least common right multiple of ¢—p
and »(f). Since we may assume that »(f) is a least common multiple
of linear factors the result follows also for u(t).

s [2, p. 34].
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3. If T is a semi-linear transformation the set € of linear trans-
formations commuting with T is a ring. In fact if ®, is the subfield of
® of fixed elements under ¢, then £€D%,; and € can be regarded as an
algebra over ®,. In particular we see that if & is a commutative re-
stricted Lie algebra, then the endomorphisms of ® form a ring €
under the natural composition of addition and multiplication. Also,
in this case ¥ is the set of elements of ® satisfying o =« so that &,
is the prime field and € is an algebra over the prime field. In general,
if we consider the vector space  as a ®[t, ¢ |-module in the usual way,
then € is the algebra of ®[t, ¢ ]-endomorphisms of €. We shall show
that € is always finite-dimensional over ®,. To do this we require a
result on certain types of equations involving the automorphism o.

We note first that if ® is regarded as a one-dimensional vector
space over itself, then ¢ is a semi-linear transformation. This is clear
since for £, a €, (o)’ =toac. If p(t) = D_tu:E®[t, o] then we denote
by u(e) the mapping £é— D_£°% u; in ®. The correspondence u(t)—wu(c)
is a homomorphism. It has been shown by Amitsur [1] that the
maximum number of linearly independent solutions over ®, of the
equation £u(s) =0 is at most the degree of u(t). We shall require the
following

LeEMMA. The space of solutions (&1, &, - - -, £.) of a system of equa-
tions D r Epij(0)=0,7=1,2, - - - -, 7, is finite-dimensional over ®,.

Proor. We may replace the £ by 7:= D taua(o) where (uu(t)) is
a unit in the matrix ring ®[¢, ¢].. Also we may replace the given
equations by an equivalent system consisting of suitable linear com-
binations. This replaces the given system by an equivalent one of the
form D _mipij(e) =0 where the matrix ($)=(u)(p)(¥), (u) and (v)
units. The invariant factor theorem shows that (#) and (v) can be
chosen so that ($) is diagonal. Thus the given system is equivalent
to a system of the form n,a,(¢) =0, - - -, n,a.(¢) =0. It follows now
from Amitsur’s result that the solutions spaces are finite dimensional
over .

We can now prove

THEOREM 4. Let T be a semi-linear transformation in a finite dimen-
sional vector space & over ® and let B, be the subfield of fixed elements of
the automorphism o of T. Then the algebra € of linear transformations
in & commuting with T 1is finite dimensional over ®,.

PrOOF. Let (e, €3, - - -, €,) be a basis for & over ® and write
e.T= D tije; and e;A = D aije; for AEE. The condition AT=TA is
equivalent to (af;)(ti;) = (#:;)(ew;). Thus the coordinates ai; satisfy a
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system of equations of the type considered in the lemma. Hence €
is finite dimensional over ®,.

COROLLARY. If 8 s a commutative restricted Lie algebra over a perfect
field ®, then the ring of endomorphisms E of R over ® is a finite ring.’?

ProoOF. Since € is finite dimensional over ®, and ®, is a finite field,
this is clear.

It is easy to determine the ring € for a semi-simple ® over an
algebraically closed field. Here we have a basis (k1, ks, - - -, k,) such
that b =hi. If hiA = D au; h;, the condition that A EE gives o, =a;
(cf. the proof of Theorem 4). Hence the a;; are in the prime field ®,.
It follows that € is isomorphic to the matrix algebra ®,,. It is clear
also that the group of automorphisms of £ is isomorphic to the group
of nonsingular matrices over ®,.
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