
COMMUTATIVE RESTRICTED LIE ALGEBRAS1

N.JACOBSON

A Lie algebra of characteristic p^O is called restricted if in addition

to the usual compositions one has defined a unary operation a—>a[pl

such that
(aa)[pJ = apalp], a in the base field,

[a, Jl'l] =  [•■■ [fli] ••■*], (fi's)

p-i
(a + &)[p] = a'*' + Jl»l + £ Si(a, b),

1

where Mi(a, b) is the coefficient of X'-1 in

[ • • • [[a, \a + b]Xa + b] • ■ • Xa + b]2 {p - 1 (Xa + 6)'s).

Examples of such algebras are subspaces of associative algebras of

characteristic p^O which are closed under the Lie multiplication

[ab] =ab — ba and under pih powers. Then one may take a[pl =ap. It

is known that every restricted Lie algebra is isomorphic to one of this

type. For this reason we may simplify our notation in the sequel and

write a" for alp]. We call the mapping a—>ap the p-operator in 2.

We shall call a restricted Lie algebra 2 commutative if [ab] =0 in 2.

These algebras play an important role in the theory of simple re-

stricted Lie algebras since in all known examples every such algebra

contains a commutative (restricted) Cartan subalgebra. Moreover,

Zassenhaus has shown recently that if 2 is a Lie algebra of character-

istic p5*Q which has a representation with nondegenerate trace form,

then the Cartan subalgebras of 2 are all commutative. The present

author has extended Zassenhaus' result to show that if 2 is restricted

and has nondegenerate trace form in a (restricted) representation,

then the Cartan subalgebras are also semi-simple in the sense defined

below. These results and some of those contained herein will be used

in a forthcoming paper by G. Seligman on the classification of simple

restricted Lie algebras which admit nondegenerate trace forms.

1. In defining subalgebras, ideals for a restricted Lie algebra, one

requires closure with respect to the ^-operator as well as the usual

closures relative to the other compositions. Similarly, homomor-
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2 See [3] for the definition and results stated without proof in this paragraph.
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phisms are required to commute with the ^-operator. If 8 is commu-

tative, the conditions on the />-operator reduce to

(a + b)p = ap + bp,        (aa)p = avap.

Thus the p-operator is a semi-linear transformation relative to the

isomorphism a—>ap in the base field <£. Since 8 is commutative every

subalgebra is an ideal and these are just the subspaces invariant under

the ^-operator. In fact, it is clear that the study of 8 is equivalent to

that of the given semi-linear transformation.

From now on we suppose 8 finite dimensional and <£ perfect. The

latter condition implies that a—**p is an automorphism.

An element aG8 is nilpotent if apt( = (apl^1)p) =0 for some k=0

and a commutative 8 will be called semi-simple if it has no nilpotent

elements ?^0. It is clear that 8 is semi-simple if and only if the p-

operator is an onto mapping in 8. Fitting's lemma gives a decomposi-

tion of 8=8o©8i where every element of 8o is nilpotent and 8i is

semi-simple.

Consider now, more generally, any semi-linear transformation T

in a finite dimensional vector space 8 and denote the associated

automorphism in <£> by <r. To study the decomposition of 8 relative

to Tone introduces the polynomial ring<i>[), a] of formal polynomials

in / with coefficients in <E> such that at = ta", a G$- 8 can be regarded as

a $[/, <r]-module.3 The theory of these modules shows that we can

decompose 8 as a direct sum of cyclic subspaces [xi]ffi[x2]ffi • • •

© [xr]. Here [xi] is the space spanned by the vectors x,-, XiT,

XiT2, ■ ■ • . If a; denotes the polynomial of least degree m< and leading

coefficient 1 such that x<a< = 0 then (xi, XiT, • ■ ■ , XiTni~l) is a basis

for [xi]. It is known that we can choose the Xi so that at is a total

divisor of ai+i in the sense that there exists a two-sided ideal a*f> [t, a ]

so that

at$[t, c] 3 ai$[t, a] 2 a*fi*[<, <r].

If 8 is a restricted Lie algebra, then we shall call 8 cyclic if it has a

basis of the form (a, ap, ap'', ■ ■ ■ , a""-1). The polynomial p.(t) of least

degree (leading coefficient 1) such that ap.(t) =0 is called the order of

the generator a. If n(t) =tn — tn~lai — tn^2a2— ■ ■ • —a„ then we have

the relation

(1) a"" = aio""-1 + a2apn^ + • ■ • + ana.

The result indicated is that any commutative restricted Lie algebra

3 [2, p. 29]. The arithmetic of the polynomial domain $[/, <r] where a is the auto-

morphism a—*ar has been considered by Ore in [4].
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is a direct sum of cyclic ones and the orders can be chosen as indi-

cated.

We now distinguish two cases: <r of finite order and a of infinite

order. For the ^-operator these correspond, respectively, to <£ finite

and d> infinite. The theory for the first case is quite well worked out.

Moreover, for the applications to Lie algebras the case of an alge-

braically closed field is most important. Hence we shall assume in the

remainder of this section that a is of infinite order. In this case it is

known that the only polynomials a* such that a*d>[<, a] is two-sided

are the ^-multiples of the powers tk.i It follows that if T is non-

singular then r = l in the decomposition into cyclic subspaces. For

the ^-operator this gives

Theorem 1. Every semi-simple commutative restricted Lie algebra is

cyclic.

If 2 is cyclic with generator a whose order is n(t)=tn — t"~1a1

— • • • -«„, then (a, ap, • ■ • , ap"_1) is a basis and ap" =aiapn~1

-\-a2ap"^i-r- • ■ • +ana. It follows that the"^-operator is an onto map-

ping if and only if an5^0. Hence this is the condition on p(i) that 2

be semi-simple.

2. We shall now derive a condition that /x(i) in $[t, a] be divisible

on the left by t— a. For this purpose we set A70(a)=l, Nk(a)

—aa"a'   • ■ • a" ~ . Then we have the following

Lemma, t — a is a left factor of (x(t) = yi" tk[xk if and only if

2Z Nk(a)nk = 0.
o

Proof. We have the identity

(/ - «)(/*-! + t*-^1 + lk-3ct'k-ia<'i-1

+ •••+<*'••• a'") = tk - Nk(a).

Right multiplication by ju* and summation on k gives

/*(') - £ #*(«)/*» = (* - «)Q(0.
The result is now clear.

We suppose now that <J> is algebraically closed of characteristic p

and a is the automorphism a—*ap. Then Nk(a) =al+p+'"+pk~1

= a(/-i)/(p-i) and the condition that t— a is a left factor of n(t) is that

a is a root of ju(X) = X)^(p _1)/(p_1V*-6 Thus the only irreducible poly-

4 [2, p. 38 and pp. 49-53].

5 This result is due to Ore [4].
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nomials in $[t, a] of positive degree are the linear ones. A restricted

Lie algebra is called simple if and only if it has no proper ideals 5*0.

For commutative algebras this means that 8 has no proper subspaces

5*0 invariant under the ^-operator. Our results show that this is the

case if and only if 8 is cyclic and the order of the generator is irreduci-

ble in $[<, a]. We can now prove

Theorem 2. If f> is algebraically closed, then the simple restricted

commutative Lie algebras over <£ are all one dimensional. There are just

two nonisomorphic types of such algebras.

Proof. If 8 is simple commutative and * is algebraically closed,

then the foregoing argument shows that 8 is generated by an element

a such that ap =aa. This implies the first statement. If a =0, 8 is nil-

potent. Otherwise, we replace a by h=a~ll{p~l)a and obtain hp = h.

The second statement is now clear.

We can now prove our main result.

Theorem 3. If 2 is a semi-simple commutative restricted Lie algebra

over an algebraically closed field, then 8 has a basis (hi, h2, ■ ■ ■ , hn)

such that lu=hi,i = l, 2, ■ ■ • , n.

Proof. In view of Theorem 2 the result to be proved is that 8 is

a direct sum of simple non-nilpotent subalgebras. Now it is known

that a cyclic space [x] relative to a semi-linear transformation is a

direct sum of irreducible subspaces if and only if the order a is a least

common right multiple of irreducible polynomials in 3>[/, a]} The

result we require is therefore the following. Let <£ be algebraically

closed of characteristic p and let <r be the automorphism a—xxp in <J>.

Then every polynomial n(t) = JZo tkfjLk with /i0 5*0 is a least common

right multiple of linear polynomials in 3?[t, a]. As before let /i(A)

= SA^*-"'^1'^ and let jit(X)' be the derivative of /1(A). Then

/i(X)'X = /i(X) — mo-

Hence (/x(X), ju(X)') = l and ]u(A) has (pn—l)/(p — l) distinct roots

at (?*0). It follows that/i(0 has exactly (Pn-l)/(p-l) linear left

factors t—at. Since n(t) is a product of linear factors we can write

fi(t) =v(t)(t—a). Since v(t) is of lower degree than jx(t) the result just

obtained shows that /x(t) has a left factor t— /3 which is not a left

factor of v(t). Hence p.(t) is a least common right multiple of t— (i

and v(t). Since we may assume that v(t) is a least common multiple

of linear factors the result follows also for n(t).

* [2, p. 34].
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3. If T is a semi-linear transformation the set £ of linear trans-

formations commuting with T is a ring. In fact if $o is the subfield of

"l? of fixed elements under cr, then £2^0 and £ can be regarded as an

algebra over $0- In particular we see that if 2 is a commutative re-

stricted Lie algebra, then the endomorphisms of 2 form a ring £

under the natural composition of addition and multiplication. Also,

in this case <£>0 is the set of elements of <i> satisfying ap=a so that <£>o

is the prime field and £ is an algebra over the prime field. In general,

if we consider the vector space 2 as a4>[i, <r]-module in the usual way,

then £ is the algebra of <!>[/, a]-endomorphisms of 2. We shall show

that £ is always finite-dimensional over <J>0. To do this we require a

result on certain types of equations involving the automorphism <r.

We note first that if <£ is regarded as a one-dimensional vector

space over itself, then a is a semi-linear transformation. This is clear

since for £, «£<£, (fa)' = £'a'■ If n(t) = £<'Mi€:<£[<> «■] then we denote

by m(°0 the mapping £—» X*£'* m in $. The correspondence n(t)^>/j.(cr)

is a homomorphism. It has been shown by Amitsur [l] that the

maximum number of linearly independent solutions over 4>0 of the

equation £/u(<r) =0 is at most the degree of ju(/). We shall require the

following

Lemma. The space of solutions (£1, £2, • • • , £„) of a system of equa-

tions y.Li iiPn(o') =0, 7 = 1. 2, • • • • , r, is finite-dimensional over $o-

Proof. We may replace the £,• by ??<= X}£iWtf(o-) where («.*(/)) is

a unit in the matrix ring $[t, <r]„. Also we may replace the given

equations by an equivalent system consisting of suitable linear com-

binations. This replaces the given system by an equivalent one of the

form 2~2vipii(ff) =0 where the matrix (p) = (u) (p) (v), («) and (v)

units. The invariant factor theorem shows that (w) and (v) can be

chosen so that (p) is diagonal. Thus the given system is equivalent

to a system of the form r;iai(<r) =0, • • • , WrO-rio) =0. It follows now

from Amitsur's result that the solutions spaces are finite dimensional

over <iv

We can now prove

Theorem 4. Let T be a semi-linear transformation in a finite dimen-

sional vector space 2 over 4> and let 4>0 be the subfield of fixed elements of

the automorphism a of T. Then the algebra £ of linear transformations

in 2 commuting with T is finite dimensional over $0-

Proof. Let (eu e2, ■ ■ ■ , en) be a basis for 2 over $ and write

dT= £ii7ey and gA = 2~2a*iej f°r -<4£:£. The condition AT= TA is

equivalent to (ay)(/,-y) =(<<y)(a»y). Thus the coordinates atj satisfy a
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system of equations of the type considered in the lemma. Hence £

is finite dimensional over $0.

Corollary. If 8 is a commutative restricted Lie algebra over a perfect

field <&, then the ring of endomorphisms £ of 8 over 4> is a finite ring.7

Proof. Since £ is finite dimensional over $0 and <t>o is a finite field,

this is clear.

It is easy to determine the ring £ for a semi-simple 8 over an

algebraically closed field. Here we have a basis (hi, h2, • • • , h„) such

that ht =hi. If hiA = X)a., hh the condition that .4G£ gives c4} = aij
(cf. the proof of Theorem 4). Hence the a;, are in the prime field $0.

It follows that £ is isomorphic to the matrix algebra <i>on. It is clear

also that the group of automorphisms of 8 is isomorphic to the group

of nonsingular matrices over $o-
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