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In this note some of the interesting work on the synthesis problem

of electrical network theory is translated into ordinary algebraic lan-

guage.

A function f(z) of a complex variable z is positive real in the sense

of Brune if f(z) is a rational function with real coefficients such that

Re/(z)^0 for Re z^O. (PR is an abbreviation for positive real.)

Starting with PR functions it is obvious that the following operations

lead to new PR functions:

(a) Multiplication by a positive constant or zero, cf(z);

(b) Forming the inverse, l//(z);

(c) Addition, fi(z)+f2(z).
The zero function is PR and operation (b) is excluded in this case.

Starting with the PR functions 1 and z as a basis, it follows that

the operations (a), (b), and (c) generate a subclass of the PR class.

It is a consequence of a synthesis method given by Bott and Duffin

[l ] that actually any PR function can be so generated. This observa-

tion is due to Brockway McMillan. In this note it is shown that the

class of positive real matrices may be generated in an analogous

fashion.

A positive real matrix function F(z) is defined as follows:

I. F is an n by n symmetric matrix.

II. The matrix elements Fjk are rational functions of z with real

coefficients.

III. For any choice of complex numbers C\, c%% • • • , C„

n       n

Re X) T,FjkckCj* ̂  0   for   Re z ^ 0.
i    i

Here the asterisk denotes the complex conjugate. Starting with PR

matrices the following elementary operations lead to new PR

matrices:

(a) AtFA where A is an arbitrary n by n matrix with real constant

matrix elements and where A t is the transpose of A;

(b) Forming the inverse, F~l (if its exists);
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(c) Addition, F, + F2.

It is obvious that (a) and (c) lead to PR matrices. It is clear that F-1

satisfies I and II. Let ^F^1 Ck=bj-, then

L 2>7*W = £ bicf = (D T,F*hbf)*

and it is seen that III is also satisfied. Thus F_1 is PR.

The following theorem is to be proved:

Theorem. Starting with the identity matrix I and the matrix zl as a

basis, then any positive real matrix function F(z) may be generated by

the operations (a), (b), and (c) in a finite number of steps.

The proof is to be given by induction on the number of rows and

columns. In the case » = 1, a PR matrix is a PR function and the

operations (a), (b), and (c) for matrix functions are identical with the

operations (a), (b), and (c) for functions. It is easily seen that the

cited paper of Bott and Duffin furnishes a proof in this case. The

procedure given there is based on a version of Schwarz's lemma dis-

covered by P. I. Richards.

The procedure which follows is based on a series of theorems stated

by M. Bayard [2]. The proofs of Bayard's theorems are given in a

paper by R. Leroy [4]. The work of Bayard and Leroy is based on

previous work of C. M. Gewertz and W. Cauer. To suit the present

purpose these theorems will be stated here in a slightly modified form.

Some of the proofs are outlined; for more detail the paper of Leroy as

well as the other references cited may be consulted.

Suppose that the theorem is true for n — 1 by n — 1 matrices and

consider an n by n PR matrix F. First suppose that

(1) detF(z) =. 0 for all z.

For 2 = 1, F is a real symmetric matrix. By a standard diagonalization

theorem there exists a matrix E which is real, constant, and non-

singular such that G =EtFE is diagonal at the point 2 = 1. Because of

(1) some diagonal element of G(l) must vanish. Without loss of

generality it may be assumed that G„„(l) =0. It follows from III that

the diagonal elements of a PR matrix are PR functions. It is easy

to see that 0 is the only PR function which can vanish for Re 2>0.

Thus Gn„(z)=0. It then follows from III that Gnj(z)=0 for

j = l, ■ ■ ■ ,n.

Let G' be an n — 1 by n — 1 matrix whose matrix elements are Gjk

for j, k = l, 2, • • ■ , n — 1. Let /' denote the n — 1 by n — 1 identity.

Then by the inductive hypothesis G' can be generated from I' and

zV'. In the course of this generation constant multiplier matrices A'
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may be employed. With each such matrix associate an n by n matrix

A defined as Ajk=A'jk for j, k = l, 2, • • • , n — 1 and .4n„ = l and

Ajn=Anj = Q if J9*n. Then the operations which generate G' from I'

and zl' are applied to / and zl with A replacing A'. If G" is the matrix

so generated, it is clear that Gkj = G'kj = Gkj for k,j = l, 2, ■ ■ ■ , n — \.

Let D = I except that D„„ = 0, so G=DtG"D and

(2) F = E?DG"DE~l.

Thus r7 is generated from G" by operation (a) with A = DE~l.

Let Ci, c2, • • • , cn be an arbitrary set of complex constants, then

(3) f(z) = £j:Fjk(z)ckC*
1     1

is a PR function if F is a PR matrix. It is seen from (3) that F can

have no poles for Re z>0. Moreover, poles on the imaginary axis

must be simple. As a convention poles at infinity are here regarded

as being "on the imaginary axis."

A PR matrix A which is an odd function of z is termed IPR.

Clearly the only poles of A are simple poles on the imaginary axis.

Thus A may be expanded in the partial fraction form

(4) A(z) = zB„ + z~lB0 + z(z  + fc'f \l?i + • • • + z(z2 + £)Bm

where ki, ■ • ■ , km are real distinct positive constants and where the

matrices B„, Bo, B\, ■ ■ ■ , Bm are real, constant, and symmetric.

From (3) it is seen that the B matrices are semi-definite. Any semi-

definite matrix B can be expressed in the form B =A(A where A is a

real matrix. Thus

(5) z(z2 + k2)-^B =A,[zI+ k2(zI)-lYlA.

It follows from (4) and (5) that any IPR matrix A can be generated.

A PR matrix Q whose matrix elements are bounded on the imagi-

nary axis may be termed BPR. By expansion in partial fractions any

PR matrix F may be decomposed in the form

(6) F = A + Q

where A is IPR and Q is BPR.

If Q is a BPR matrix let a matrix Q° be defined by

(7) 2Q\z) = Q(z) +Q(-z).

Thus Q°(z) is an even function of z. On the imaginary axis, z=iy,

clearly
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(8) Q\iy) = Re Q(iy).

Thus Q°(iy) is a real semi-definite matrix and is a function of y2. By

the Gauss method of completing the square, a semi-definite quadratic

form may be expressed as a sum of m squares of linear forms (m^n).

Associating a matrix with each square gives

(9) Q (z) = E Rib).
1

Here each matrix R°(z) is symmetric and the matrix elements are

rational functions of z2 with real coefficients. R%(iy) is semi-definite,

so it follows from (9) that R°j(iy) can not have a pole on the imaginary

axis, for othersise Q°(iy) would have a pole. The quadratic form of

R°(z) is the square of a linear form, so the matrix R°(z) has rank 1

with the possible exception of a finite number of z values. Except for

this last property R°(z) has the same properties as Q°(z).

By a partial fraction expansion of R%(z), it is seen that there is a

matrix Rj(z) without poles for Re 2^0 such that

(10) 22c°(z) = Rj(z) + Rj(-z).

Let g(z) be a function which is real on the real axis and which is

analytic for Re z^O including the point at infinity. Then g(2) is

uniquely determined by the value of its real part on the imaginary

axis. Thus

m

(11) Q(z) = D R,iz).
i

Moreover, by the same lemma it is seen that R,(z) is BPR. The de-

composition relation (11) was found independently by Y. Oono [S].

By virtue of (11) the problem has been reduced to the considera-

tion of a BPR matrix R whose even part R° is of rank 1; these are

termed regular reduced matrices by Leroy. The case det R=0 has

been disposed of, so it may be assumed that R has an inverse, say X.

Then

(12) R~* = X =  V + P

where V is IPR and P is BPR. Since X(z)+X(-z)=X(z)[R(z)

+R( — z)]X( — z), it is seen that

(13) P°(z) = Xa(z) = X(z)R\z)X(-z).

It follows that the even part of P is also of rank 1.

Leroy considers the degree of a matrix of rational functions to be
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the degree of the lowest common denominator polynomial of the

matrix elements. He shows that the degree of R is greater than the

degree of P. Thus if the theorem is not true, there is a BPR matrix

R whose even part is of rank 1 and of lowest degree which can not be

generated. But (12) shows that R can be generated from V and P,

and this contradiction completes the proof of the theorem.

A different definition of degree was introduced by B. McMillan [6]

and independently by B. Tellegen [7]. The degree of F may be de-

fined as the maximum of the degree of the numerator polynomial of

det (F+A) for any constant matrix A. It results from McMillan's

theorems that degree R = degree R~~1= degree V -(-degree P. For

z = 0, det 2?= det R° = 0. Thus det R~* has a pole at z = 0, and so

some of the matrix elements of V have a pole at z = 0. It follows that

degree R>degree P, and so an alternative proof of the theorem is

furnished.

The references cited below give various methods of synthesizing a

network with n pairs of terminals. The theorem proved here furnishes

another solution of this synthesis problem. Operation (a) corresponds

to the use of an ideal transformer; operation (b) corresponds to

changing from impedance to admittance; and operation (c) corre-

sponds to series or parallel connection. The synthetic network result-

ing may be regarded as a generalized series-parallel network.
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