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Let A = (a„k), n,k = l,2, • ■ ■ , be a matrix of complex numbers. Let

D be the set (linear sequence space) of sequences x= {xn\ such that

y=Ax is defined; y being the sequence {yn}, where yn= 2* ankXk for

each n. Let R be the set of all ^4x, xED. We call D and R the domain

and range of A. They are linear subspaces of (s), the space of all

sequences.

To emphasize the distinction between inverse matrix and inverse

transformation, we denote Ax by T(x), thus defining T:D—*R, and

investigate, under various hypotheses:

(a) the existence of right, left, and two-sided inverses for A, de-

noted by A', 'A, A-1,

(b) the same for T, denoted by T', 'T, T~l,

(c)^ connections between (a) and (b).

By A' we mean any matrix satisfying AA' =1, the identity matrix.

By T' we mean any function T':R—>D satisfying T(T'(x)) =x for all

x£i?. The other symbols are interpreted similarly. By "T' exists" we

mean "there exists at least one T'." Similarly for the others.

Our main results concern row-finite matrices, i.e. such that almost

all the elements in each row are zero; column-finite matrices, i.e.

matrices whose transpose is row-finite; and reversible matrices, i.e.

matrices A such that for each convergent sequence y, the equation

y=^4x has a unique solution (we shall see that if ^4 is row-finite, re-

versibility is equivalent to the existence of a unique solution for all y).

A discussion is given of the constants c„ of Banach [l, p. 50] which

appear in the inverse transformation of a reversible matrix.

Let E be the (countably infinite-dimensional) set of sequences x

such that x„=0 for almost all n, (c) the set of convergent sequences.

Clearly, D^E for all ^4; ^4 is row-finite if and only if D = (s),

column-finite if and only if Ax^E whenever x£E, reversible if and

only if RZD(c), and J" is 1 — 1 (i.e. to each y(E:R corresponds exactly

one x(E£>; A is 1-1 will mean that the associated T is 1-1).
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Theorem 1 (Inverse transformations).

(a) A linear T' always exists,

(b) 'T exists {and is linear) if and only if T is 1-1,

(c) if 'T exists it is unique, and 'T=T' = T~l,

(d) T' is unique if and only if 'T exists.

For example, (a) is proved by noting that T is 1-1 on the subspace

of D complementary to the kernel of T.

Theorem 2 (Inverse matrices).

(a) A' exists if and only if R~2)E,
(b) if T is 1-1, there exists at most one A',

(c) if T is not 1-1, ^4' ^ not unique, if it exists,

(d) A~x may exist and not 'T, T~l may exist and not 'A. In the

former, A may be also row-finite and column-finite, in the latter, A may

be also reversible.

(e) // a row-finite 'A exists, 'T must exist. More than one row-finite

'A may exist.

For (a), if RZ)E, we take for the &th column of A' any solution of

hk=Ax, where S*= {0, 0, ■ • • , 0, 1, 0, • • • }, 1 in the Mi place.

For (d), consider the following examples.

Example 1.

1-1 0 0 0 • • •

0 1-1 0 0- • •

0     0      1-1      0 • ■ •

This matrix has the two-sided inverse given in Example 5, but it

is not 1-1 since it transforms {1, 1, 1, • • • } to 0. Other examples of

this type occur in Wilansky [2, p. 391 ] and (a particularly interesting

one) in Agnew [3, p. 555].

Example 2.

1 1 1 1 1 1 • • •

1 0 1 1 1 1 • • ■

1 0 0 1 1 1 • • •    .

1 0 0 0 1 1 • • •

This matrix has no left inverse since the first row {bi, fa, • ■ ■ } of

such a matrix would have to satisfy ^2bi = l, 0 =b1=b1+fa = fa+fa
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+63= • • • . On the other hand A is reversible. It is 1-1 since .4x = 0

implies 0= ^Xj= ^xj —x2 = 2^Xi —x2 —x3= • • • , hence x = 0; also

RD(c), for let y£(c) and Xi = lim y„, x„=yn_1— yn forw = 2, 3, • • • ,

then y=Ax.

For the second part of (e) we consider:

Example 3.

0 0   0 • • •

1 0   0 • • •

0    1   0- • •    .

0   0    1 • • •

This has

a 1 0 0 • • •

0 0 1 0 • • •

0 0 0 1 • • •

as left inverse, for arbitrary a.

Theorem 3 (Row-finite matrices). Let A be row-finite. Then

(a) A' exists if and only if R = (s),

(b) A is reversible if and only if it is 1-1 and R = (s),

(c) if A' exists, a row-finite A' exists.

However,

(d) there exists a row-finite, column-finite matrix B such that J3_1

exists, but no row-finite 'B.

The interest of (d) lies in the fact that the row-finite B' given by

(c) is different from B~i.

Assume that A' exists. Then 20E. Let (s) be given the linear

metric |x| = ^J2~n |x„|/(l + |x„|). A theorem of Toeplitz asserts

that R is closed in (5) when A is row-finite. We give a proof of this

theorem in an appendix at the end of this paper. Since E is dense in

(s), we conclude that R = (s).

We shall show that a row-finite A' exists, assuming R = (s); this

will complete the proof of (a) and (c). Assume first that T is 1-1. Then

J1 is a linear homeomorphism of (5) onto itself, hence (Banach [l,

Theorem 5, p. 41]) so also is T~i, and so it is given by a row-finite

matrix. This matrix is A~l, as a computation shows.

If T is not necessarily 1-1; since A' exists, by Theorem 2(a) the

rows of A are linearly independent elements of E. There exists a basis,
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necessarily countable, for E, which includes the rows of A. We form

a matrix B whose rows are the elements of this basis and whose odd-

numbered rows are the rows of A. Then B is 1-1 and B' exists, by

Toeplitz's theorem (see the appendix). Hence, by the above argu-

ment B' is row-finite. Finally, by omitting the even-numbered col-

umns of B' we have a row-finite A'.

Part (b) is now clear. Part (d) is given by Example 1, the two-

sided inverse being unique as a left inverse.

The next result shows that the hypothesis "row-finite" cannot be

dropped.

Theorem 4 (Complement to Theorem 3).

(a) There exists a matrix A for which A~l exists, but no row-finite A'.

(b) There exists a matrix A (for which a row-finite, column-finite A-1

exists) such that E(ZRt^(s), and R is not closed in (s).

For (a), consider

Example 4.
1    1    1    1    1 • • •

0    1   0   0   0- ••

0   0    1   0   0 • • ■    .

0 0   0    1   0 • • •

This matrix is easily seen to be 1-1, hence has at most one A'.

However, A' can be explicitly calculated and seen to be A~l and not

row-finite.

For (b), Example 4 would do, except for the part in parentheses.

Example 5.
1 1    1    1    1 ■ • •

0 1 1 1 1 • • •

0 0 1 1 1 • • •

0   0   0    1    1 • • •

If y=Ax, we havex„=y„—y„+i, w = l, 2, • • • . Thus {n\ £J?, since

yn = n would imply that xn= — 1, for which .4x does not exist. But

consideration of sequences of the type {0, 0, • • •, 0, — 1,1, 0, 0, • • • }

in D shows that R~2)E. Thus R is not closed in (5).

Theorem 5 (Column-finite matrices). Let A be column-finite.

Then if T is 1-1 and R~Z)E, A~l exists.

Theorem 2, part (d) shows that the hypothesis "column-finite" can-
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not be dropped, even if A is assumed reversible. Example 1 shows

that the converse is false.

To prove the theorem, we have, by Theorem 1, a linear T~l. Since

RZ)E, there exists a matrix B such that Bx = T_1(x) for x££. Since

A is column-finite, .<4x£.E if xEE, hence we have, for xG£, B(Ax)

= x, and so BA=I. Also, for x£.E, A(Bx) = T(T~1(x)) =x, and so

AB =1. This concludes the proof.

For the remainder of this note, let A be reversible. Then, as shown

in Banach [l, p. 50], y =Ax has, for y(E.(c), the solution

(1) xn = cn lim y + ^ bnkyk,
k

with  $3* \bnk\ < °°.
Setting y = 5*, k = l, 2, ■ • ■ , yields the fact that B=A'. Here of

course A' is unique since T is 1-1. Example 2 shows that 'A need not

exist. MacPhail [5] has shown that the sequence {cn} may be un-

bounded, even if A is conservative, i.e. if ^4x£(c) whenever x£(c).

Wilansky [2] has shown that c„ = 0 for all n if A is row-finite.

Suppose that A has convergent columns, i.e. let a* = limn a„* be

assumed to exist for each k. For example, a conservative matrix has

this property, while a regular matrix has ak = 0 for all k. For all x

such that Ax(El(c) we have, from (1),

QO 00 00

Xn   =   Cn  lim    XI QmkXk +   2Z &»* X 0*rXr.

Our assumption that .4 has convergent columns implies that this

identity holds, in particular, for x = S*, k = l, 2, • • • , and it then

reads I = D-\-{A')A, where D = {cnak). We have proved:

Theorem 6 (Reversible matrices). Let A be reversible, and with

column limits ak. Then A' satisfies (A')A =I—D, where D = {cnak), the

cn being defined by (1).

If A is regular and reversible, this theorem shows that A~l exists;

we shall prove more than this, however, namely, that cn — 0 for all n,

and under wider hypotheses.

Let us call A co-regular if the number p(A) =limn ^k a„k— X/1*

exists and is not 0. The role of this number in the theory of summabil-

ity has been shown elsewhere by the authors. A regular matrix is

co-regular.

Theorem 7. Let A be reversible, co-regular. Then cn = 0for all n, A~x

exists and is the matrix of T~l.
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Let (.4) be the set of sequences x such that Ax£(c), let ||x||

= sup„ | ^j; a„kXk\ for x£(^4). Then, clearly, (A) is a Banach space,

since the mapping T from (A) to (c) is an equivalence, (c) having its

usual norm, supn |xn|. From (1), we have |xn| g(|c„| + J^* \bnh\)

•||x||, hence xn is, for each n, a continuous linear functional on (.4).

Using the known form of the most general continuous linear func-

tional on (c) we have, for such a functional /on (.4), f(x)=tA(x)

+ 2gr-4r(x), where^4r(x) = J2karkXk, A(x) =limn^4n(x), Y^\gr\ < °°.

Let i denote the sequence {l, 1, 1, • • • }.A straightforward compu-

tation yields p(f)—f(l) — /;f($k) =tp(A). Now, for any n, the func-

tional/given by/(x) =x„ hasp(/) =0. By hypothesis, p(A) ^0, hence

r = 0. We have proved that xn= J^l x grnAr(x) for all x£(.4). Com-

paring this with (1) yields cn lim y+ 21* 6»*y*= 2* g»*y* for all
yG(c), for each n. Hence c„=0 for each n.

Remarks. 1. By introducing a weaker linear topology for (.4), more

information about the c„ is available.

2. That B='A, it is not sufficient that 5(.4x)=x for all x£(.4).

For example if Ax = {xi, 0, Xi, x2, 0, Xi, x2, x3, 0, • • • } one sees that

(.4) contains only the zero sequence.

Appendix. Toeplitz's theorem. The following result due to Toeplitz

[6] is quoted (incorrectly) in Banach [l, p. 51, Theorem 12]. (See

Zeller [4, p. 47].) We give a short proof.

Theorem. Let A be row-finite. Theny^R if and only if y.Li A<y< = 0

whenever hi, h2, ■ ■ ■ ,hris a set of numbers such that y,Li A,a,t = 0 for

£ = 1,2,

Necessity is trivial. Now assume that y satisfies the stated condi-

tions.

Let a« denote the ith row of A, so that a'EiE. By hypothesis,

XXy;=0 whenever hu h2, ■ ■ ■ , hr satisfy ]£Xa* = 0. Let f(a')=yt
for i = l, 2, ■ ■ ■ . Then / can be extended so as to be a linear func-

tional defined on all of E; for it can first be extended to the linear

extension of {a'} by /( J^a*) = 2Zf«'3'<i and thence to all of E, for

example, by means of a Hamel basis. Let xj=/(Si) define x. Then

clearly y =Ax, hence y£22.

Corollary. Let A be row-finite. Then R is closed in (s).

Let H be the set of continuous linear functional/ on (s) such that

/(a*) =0, i = 1, 2, • • • . Then, by the theorem, R is the set of points

at which every/££? vanishes, i.e. R is the intersection of a collection

of closed sets.
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DIFFERENTIAL IDEALS1

D. G. MEAD

0. Introduction. In this paper we investigate the membership of

power products in certain differential ideals. The questions examined

were motivated by results by Levi,2 which we use extensively. Levi

has obtained for [yp] and [uv] sufficiency conditions for membership

of a pp. in the ideal, which tests membership, in certain cases, by a

calculation using only the weight and degree of the pp. In Theorem IV

we show that a more refined criteria is required for the determination

of membership of a pp. in [yp]. Whether a necessity criteria for mem-

bership of a pp. in [uv] will require more information than the weight

and degree of the pp. is not known.

Levi has also shown that the totality of pp. in u and v are divided

by a single calculation into three nonempty sets: the a-terms, which

are outside the ideal [uv], another set all of whose members are in the

ideal, and a third set concerning whose elements membership in the

ideal is undecided. The number of elements known to be outside the

ideal is increased by Theorem II, and a dependence of the set of ele-

ments whose membership in [uv] is undecided upon one of its proper

subsets is demonstrated in Theorem III. Carrying out the reduction
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