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1. Let x and y be random variables with finite expectations. We

shall say that x dominates y if £{d>(x)} ^ £{<£(y)} whenever 0 is a

continuous convex function on the real line Rl. (The expectations

£{<£(*)} and £{<£(?)} are always well defined if + oo is admitted

as a value.)

Assume now that Xi and x2 are independent and dominate respec-

tively the independent random variables yi and y2. Let </> be a con-

tinuous convex function on R2 and denote by Fi and Gi the distribu-

tion functions of x,- and y,-. We have

I dFi(ui) j <t>(uu u2)dF2(u2) ̂    I dFx(ui) I <j>(ux, u2)dG2(u2)

=  j dG2(u2) J 4>(ui, u2)dFi(ui)

^   I dG2(u2) I 0(«i, u2)dGi(ui),

so that £{#(xi, x2)} ^ £{<b(yi, y2)}. In the same manner one can

verify more generally that

(1) £{«(xi, • • • , xn)} ^ e{<t>(yi,  ■•■ ,yn)}

provided that
(i) 0 is a continuous convex function on Rn,

(ii) xi, • • • , xn are independent and yi, • • • , yn are independent,

(iii) all expectations £{x,} and £{yi} exist, and

(iv) Xj dominates y< for l^i^n.

2. We shall give two illustrations how (1) may be used. First, how-

ever, we prove a lemma.

Lemma. Let £{y} =0 and let \y\ gl with probability one. Then y is

dominated by every symmetric random variable x such that 1 ̂  £ {| x | }

<°o.

Let a = £ {| x | } and let z be a random variable with the distribution

Pr {z=—a} =Pr {z=+a} =1/2. It will obviously suffice to prove

that x dominates z and that z dominates y.
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Observe that the relations to be proved concern only distribution

functions. Thus we may take the probability space to be the unit

square 0 <co, n < 1 with ordinary Lebesgue measure, and x a function'

only of co and increasing in co. Let us define x(co, n) by

(x(v/2), 0 < co < 1/2,
x(co, n) =   <

lx(l/2 + v/2), 1/2 ^ co < 1.

It is clear that x has the same distribution function as x, and a simple

computation shows that Jlx(u), v)dn is —a or +a according as

co < 1/2 or co^l/2. Consequently if c6 is convex we have, making use

of Jensen's inequality,

£ {<*>(*)} =  I    du I    <t>(x(oi, v))dri
J 0 "0

(2) = J   <j>(j   x(a,,v)dri)do,

= (l/2)*(-a) + (l/2)<t>(+a)

= £{^)}-

The proof that z dominates y proceeds similarly. First define

/-a, 0 < „ < (1/2)(1 - y(co)/a),
z(u, v) —  \

\+a, (1/2)(1 - y(a)/a) = V < 1.

Then verify that z has the same distribution function as z and that

/oI(co, ij)<fj;=y(co) for all o). A computation like that in (2) completes

the proof.

It is usually most convenient to take for x either a Gaussian vari-

able with mean 0 and variance x/2 or a variable whose distribution

is Pr {x=-l}=Pr {x = +l} =1/2.

3. As a first application we obtain a generalization of Khinchin's

inequalities.

Theorem. Let (yn) be a sequence of independent random variables

satisfying £{y„} =0 and \y„\ —1, and let (an) be a sequence of con-

stants. Then

(3) e^sup     2~2   aw \\  = 2(£a„)«L3-5--- (2a- 1)

for every positive integer q.
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It is enough to prove (3) for n ranging over the finite set

{l, • • • , N\ as the full assertion is then obtained by letting N be-

come large. The inequality has already been proved in [2] and [3]

when the y„ are the Rademacher functions. On noting that

supngtf | Eig*i» akuk\2q is a convex function of the point («i, • • • ,

un) of RN, we see that (3) follows from (1) and the lemma of §2.

Inequality (3) would still hold if we were to assume that each of the

y„, instead of being bounded by 1, is dominated by a Gaussian vari-

able with mean zero and variance 1.

4. Our second application is to a subject treated by Goldstine and

von Neumann in [l ].

Numerical calculation of a matrix yields a result which differs

from the true matrix by an error matrix whose elements are com-

posed of rounding-off errors. Since the magnitude of the error is

often measured by the bound of the error matrix, it becomes of some

moment to estimate the probability of large values of the bound. The

estimates are easy to make if the elements of the error matrix are all

Gaussian; I shall perform the computation in such a way that the

results are valid for certain other types of random matrices.

Let X be an n Xn matrix whose elements x,-3- are independent Gaus-

sian variables with means 0 and variances 1. Our first step is to find

an upper bound for the probability that \\x\\ be greater than (2rn)112,

where r is some number greater than 1.

Let Xi>X2> ■ • ■ >X„ be the squares of the absolute values of the

characteristic values of X. Fisher and Hsu (see Wilks' Mathematical

statistics, pages 261-265) have shown that the joint density function

&n(Xi, • • • , X„) of the X< vanishes unless Xi>X2> ■ ■ ■ >X„ and then

has the expression

,./.2-.V. LI [T(i/2)]-2 exp ( - 1 E Xi) IT (A< " Ay) II ^^
i \ 1      i /  i<j i

We need only the relation

kn(\i, ■ ■ •, x„) = (2x)1/V"[r(«/2)]-2x71/VXl/2

• n (Ai - \i)k*-i(\*, ■ ■ • ,xn).
»i

The function

f(u) = u-">eul2

(defined for positive «) is convex and attains its minimum for u = 2rn.

We have
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/i oo /• Xi p Xn-1

d\l   J        rfX2   •   •   •      J d\n^CKl)k„(Xl,   ■   ■   ■   ,\n)
2rn J 0 ^ 0

(2x)1/2 /•" fXl f'1"-1 -rn-l/2

2"[r(«/2)]2J2rn      J„ Jo

(4)        JJ (Xi - Xy)in_i(X2, • • • , X„)
;>1

(2x)l/l        /.«>    B_rn_3/2 /•« /•*»-

^ —f——;—r I     ^i <*Xi I    "^2 ■ ' ' I       aX„«„_i(X2, • • • , X„)
2»[r(w/2)]2J2rn Jo Jo

(2x)1/2(2m)"-'-"-1/2

~ 2n[T(n/2)]2(rn -«+ 1/2)

The inequality comes from replacing each X,- by zero in the product

II(Xi— X,-) and then extending the range of integration on X2 to

infinity. The succeeding equality follows from the fact that kn-i is

a probability density function.

Observing that Xi is nothing but ||-X"||!, we conclude from (4) that

Pr {||X||2> 2m}

=  ——-   f      dXl   f     d\2  ■  ■  ■     f ^(XOinCX,,   •  •  •   ,   \n)d\n
\f/(2rn) J 2rn      Jo J a

(2x)1's(2r»)— "V"

= 2"[r(w/2)]2(rw - »+ 1/2)

<_!_(_J!_y
4(r- l)(rirnyi2\er - 1/

Stirling's formula has been used in the last step.

The inequality (1) does not imply that (4) and its consequence (5)

remain true when X is replaced by a matrix whose elements are inde-

pendent and dominated by Gaussian variables, for ^(||x||2) is not a

convex function of the matrix X. Relation (1) may be used, however,

if one argues this way.

Let a = 2rw-f-l + (4r« + l)1/2. The tangent to the graph of \p at the

point (a, ^(a)) meets the u axis at u = 2rn. So the function (f>(u) which

is zero for u ^ 2rw, coincides with yp(u) for u ^ a, and is linear and con-

tinuous in the interval 2rn^u^a, is an increasing convex function.

Since u2 is an increasing convex function on 0^m< oo and \\X\\ is a

convex function on R"2, the composite function $(||X||2) is convex on

i?"2 and always less than ^(||x||2). Thus if Y=(yi,) with the ytJ- inde-

pendent and dominated by the Gaussian variables x,y, we have
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Pr{||F||2^U-^£{*(||Fli2)l

^-£U(  Y 2);
$(2rn)

= "777^ I     ^ I    ^2 • • •   I d\nf(*i)kn(ku • ■ ■ , X„)
^(2r») J2rn      Jo Jo

<_!_(JLY
4(r- l)(r«x)1/2\er-1/ '
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