ON *u*-STABLE COMMUTATIVE POWER-ASSOCIATIVE ALGEBRAS

LOUIS A. KOKORIS

A commutative power-associative algebra A of characteristic > 5 with an idempotent u may be written as the supplementary sum $A = A_u(1) + A_u(1/2) + A_u(0)$ where $A_u(\lambda)$ is the set of all x_λ in A with the property $x_\lambda u = \lambda x_\lambda$. The subspaces $A_u(1)$ and $A_u(0)$ are orthogonal subalgebras, $[A_u(1/2)]^2 \subseteq A_u(1) + A_u(0)$ and $A_u(\lambda)A_u(1/2) \subseteq A_u(1/2) + A_u(1-\lambda)$ for $\lambda = 0$, 1. The algebra A is called u-stable if $A_u(\lambda)A_u(1/2) \subseteq A_u(1/2)$ and is called stable if it is u-stable for every idempotent element u of A.

A. A. Albert has shown in [3] that a simple commutative power-associative algebra A of degree >1 over its center F with characteristic prime to 30 is a Jordan algebra if and only if it is stable. Moreover, it is known that every simple algebra of degree >2 is a Jordan algebra. Thus there remains the problem of determining the nonstable simple algebras of degree two. There do exist simple algebras of characteristic p>5 which are not Jordan algebras [3;4]. Of course, these algebras are not stable, although they may be u-stable for some idempotent u. In this paper we shall obtain the following result.

Theorem. Let A be a u-stable simple commutative power-associative algebra of degree 2 over its center F of characteristic zero. Then A is a J ordan algebra.

We shall use all of the results of [3] so we shall adopt the notations of that paper. In particular, all the results of the section giving properties of *u*-stable algebras will be used. For convenience let us state a few of the required results here.

In a simple u-stable algebra A there exists an element w in $A_u(1/2)$ such that $w^2 = 1$. Then $A_u(1) = uB$, $A_u(0) = vB$, and $A_u(1/2) = wB + G$ where B is the set of all elements b of $C = A_u(1) + A_u(0)$ with the property (wb)w = b and G is the set of all quantities g of $A_u(1/2)$ with the property wg = 0. Since e = (1/2)(1+w) and f = 1-e are orthogonal idempotents, we may decompose A relative to e. It can be shown that $A_e(1) = eB$, $A_e(0) = fB$, and $A_e(1/2) = B(u-v) + G$. The set B is a subalgebra of C and the product of two elements in G is in B. Also,

Presented to the Society, December 29, 1954; received by the editors November 4, 1954.

¹ The results of this paragraph are given in [1]. The numbers in brackets refer to the bibliography at the end of the paper.

the following multiplicative relationships exist for any a, b in B, g in G.

(1)
$$w(bu) = w(bv) = (1/2)wb$$
,

(2)
$$(wa)b = w(ab), (wa)(wb) = ab,$$

$$g[b(u-v)] = wd,$$

$$(4) gb = h - wc,$$

(5)
$$(wb)g + w(gb) = -d(u - v),$$

$$(6) \qquad (wb)[a(u-v)] = k,$$

for h, k in G, and c, d in B. The quantity d in relation (5) is the d of (3).

The theorem can evidently be reduced to the case where F is algebraically closed. Then 2 $A_u(1) = uF + N_1$ and $A_u(0) = vF + N_0$ where N_λ is the radical of $A_u(\lambda)$ and $N' = N_1 \oplus N_0 = N + N(u-v)$ is the radical of C where N is the radical of B. Similarly, $A_e(1) = eF + M_1$, $A_e(0) = fF + M_0$, M_1 is the set of all elements ec where c is in N and we have the corresponding result for M_0 .

The following important known³ lemma can now be stated.

LEMMA 1. Let A be a commutative power-associative algebra of degree two over a field F of characteristic zero. Then $A_e(1/2)A_e(1) \subseteq A_e(1/2) + M_0$ and $A_e(1/2)A_e(0) \subseteq A_e(1/2) + M_1$. Note that the result of the lemma is not vacuous here since we are assuming u-stability only.

Consider the product (eB)G which was used to obtain (4) and (5). By Lemma 1, $(eB)G\subseteq A_e(1/2)+M_0$ so that (b+wb)g=a(u-v)+h+c-wc for a, b in B, g, h in G, and c in N the radical of B. Then (wb)g=a(u-v)+c and it is shown in [3] that a=-d of relation (3). Also the quantity d in (3) and (5) is in N. These results may be stated as follows.

LEMMA 2. Let A be a u-stable commutative power-associative algebra over a field of characteristic zero. Then $GB \subseteq G+wN$, $G[B(u-v)] \subseteq wN$, $w(GB) \subseteq N$, $(wB)G \subseteq N'$, and $w(GB)+(wB)G \subseteq N(u-v)$.

It will also be necessary to have

LEMMA 3. The product $G\{(wB)[B(u-v)]\}\subseteq N$.

For proof substitute x=g, y=a, z=b(u-v) into the multilinear

² By Theorem 2 of [2].

⁸ See Theorem 6 of [5].

^{4 [2,} Lemma 10].

identity obtained from the associativity of fourth powers.⁵ Relation (1) implies wz = w(az) = 0 and we have wg = 0 by definition of G. Thus

$$4(wa)(gz) = w[(ga)z + (gz)a + g(az)] + g[(wa)z] + a[(gz)w] + z[(wa)g + w(ga)].$$

By (3) and (2), (wa)(gz) is in $(wB)(wN)\subseteq N$. The quantity ga is in G+wN by (4); hence (ga)z is in G[B(u-v)]+(wN)[B(u-v)]. Consequently, (3) and (6) imply w[(ga)z] in N. Since (gz)a lies in $\{G[B(u-v)]\}B\subseteq (wN)B\subseteq wN$, w[(gz)a] is in N. Also w[g(az)] is in $w\cdot G[B(u-v)]\subseteq w(wN)=N$. The product a[(gz)w] is in N and a[(wa)g+w(gz)] is contained in $[B(u-v)]\cdot [N(u-v)]\subseteq N$. This completes the proof of Lemma 3.

The proofs of Lemmas 15 and 17 of [3] which state that $[A_u(1/2) \cdot N']C \subseteq N'A_u(1/2)$ and $[A_u(1/2)N']A_u(1/2) \subseteq N'$ follow without change. We also have without change that $N' + A_u(1/2)N'$ is an ideal of A. Since A is simple, this ideal must be zero because it does not contain the identity element. Thus $A = uF + vF + A_u(1/2)$, which is a Jordan algebra. A Jordan algebra is stable so we have as a corollary that a simple commutative power-associative algebra of degree 2 and characteristic 0 is stable if and only if it is u-stable.

BIBLIOGRAPHY

- 1. A. A. Albert, *Power-associative rings*, Trans. Amer. Math. Soc. vol. 64 (1948) pp. 552-593.
- 2. ——, A theory of power-associative commutative algebras, Trans. Amer. Math. Soc. vol. 69 (1950) pp. 503-527.
- 3. ——, On commutative power-associative algebras of degree two, Trans. Amer. Math. Soc. vol. 74 (1953) pp. 323-343.
- 4. L. A. Kokoris, *Power-associative commutative algebras of degree two*, Proc. Nat. Acad. Sci. U.S.A. vol. 38 (1952) pp. 534-537.
- 5. ——, New results on power-associative algebras, Trans. Amer. Math. Soc. vol. 77 (1954) pp. 363-373.

University of Washington

⁵ The identity is stated in all of our references.