
GENERATORS OF THE RING OF BOUNDED OPERATORS

CHANDLER DAVIS

J. A. Dieudonne suggested in conversation that some small num-

ber of projections might suffice to generate the ring 43 of all bounded

operator on separable Hilbert space 3C. There is some analogy be-

tween such a result and the theorem that a compact connected metric

group can be generated by two elements.1 The analogy is still closer

for Theorem 2 below.

In this paper, operators A, • ■ ■ will be said to "generate" the

smallest ring (i.e., weakly closed self-adjoint algebra) containing

A, ■ • ■  and the constants.

Theorem 1. There exist three projections which generate the ring 43.

The number three cannot be reduced if 3C has dimensionality 3 or greater.

If dim (3C) = 1, there is nothing but constants in <B. If dim (3C) =2,

then any two noncommuting projections generate 43. Hereafter sup-

pose dim (3C)^3.

I will use what I shall call the closeness operator C—C(E, F) associ-

ated with any two projections E, F. It is defined by C(E, F) =1—£

-£+££+££=£££+(l-£)(l-£)(l-£). It is a positive definite

operator which, in case2 En>F+Er\(l-F) + (l-E)r\F+(l-E)
P\(l — £)=0, acts like "the square of the cosine of the angle" be-

tween EX. and £3C.
To show £ and £ fail to generate <B, I shall show some nonconstant

operator commutes with both; this is enough because such an oper-

ator commutes with the whole ring generated by £ and £, whereas

the commutator of 43 contains only constants. Since C(E, F) com-

mutes with £ and £, the only case to be considered is C constant.

E^O may be assumed. Choose x = £x, x^O, x otherwise arbitrary.

Now the subspace spanned by x and £x is not zero, and since it is at

most 2-dimensional it is not 3C; so the projection £ on it is noncon-

stant. £3C is invariant under E and £, since EFx = EFEx = Cx, which

in this case is a multiple of x. Therefore £ is a nonconstant operator
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1 H. Auerbach, Sur les groupes lineaires borntes (III), Studia Mathematica vol. 5

(1934) pp. 43-49. J. Schreier and S. Ulam, Sur le nombre des genlratcurs d'un groupe

topologique compact et connexe, Fund. Math. vol. 24 (1935) pp. 302-304.
1 Here " fl" is intersection in the lattice of projections. This equation says EX and

FX. are in position p (J. Dixmier, Position relative de deux variitis liniaires fermies

dans un espace de Hilbert, Rev. Sci. vol. 86 (1948) pp. 387-399).
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commuting with E and F.

Now for the proof of the first sentence in the theorem. Only

countable dimensionality will be treated, finite dimensionality is

handled similarly. There is a good deal of leeway in the construction;

the particular generators Ei, Ei, £3 given here are chosen for con-

venience.

Let xi, yi, x2, y2, x3, • • • be an orthonormal basis of 3C. Let

z„ = cos 0„xn+sin 0„y„, » = 1, 2, • • • , with 0„ = tt/(2w + 1). Let Pn be

the projection on [x„, y„], the subspace spanned by x„ and y„,

n = l, 2, ■ ■ ■ . Let Ei be the projection on [xi, x2, x3, ■ ■ ■ ]; E2, the

projection on [zi, z2, z3, ■ ■ • ].

Now the ring generated by £1 and £2 contains C=C(Ei, E2). It

can be shown by a direct computation that the eigenspaces of C are

the P„3C, the corresponding eigenvalues being cos20n. Each eigenvalue

is an isolated point of the spectrum; the characteristic function of the

set containing only cos2 6„ is measurable (even continuous) on the

spectrum of C. The spectral theorem implies that the ring contains

all the Pn. Also the ring contains every operator on P„3C, for on that

2-dimensional Hilbert space £i and £2 are noncommuting projections

(see the remark at the beginning of the proof).

Finally, define £3 as the projection on

[xi + x2, y2 + y3, ■ ■ ■ , x2n-i + x2n, y2n + ytn+u ■ ■ • ]■

The ring 5^. generated by £1, £2, and £3 will be shown to be 43.

Let £(x; y) denote, for any unit vectors x and y, the operator

characterized by

E(x; y)x = y,

z -L x   implies    £(x; y)z = 0.

Also hereafter let wn mean either xn or yn, n — 1, 2, ■ ■ • .

^R. contains £(x2n-i; x2n). For it contains the projection on [x2n_i],

and premultiplying that projection by 2P2n£3 gives the desired oper-

ator. Therefore % contains £(w2„_i; w2n), and necessarily also its ad-

joint, E(w2n; w2„-i). Similarly, f^ contains £(y2„; y2n-n), hence

E(win; w2n+i) and E(w2n+i; w2n). By induction, £(w,-; Wj)E%.. There-

fore 'R. contains every operator whose matrix, using the originally

given orthonormal basis of 3C, has finitely many nonzero entries.

Let^4£<B, and let

An = Z PkAPk-
1
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Then AnG%, and A is the weak limit of the A„, so A G'R.. It has been

proved that 41=43.

(Weak closure of 4\ was required only in the last paragraph of the

proof; uniform closure was all that was used before. I do not know

if there exist three projections which generate 43 by algebraic opera-

tions and uniform limits.*)

Theorem 2. There exist two unitary operators which generate 43.

They may be chosen so one of them is a symmetry.

This will be proved relying largely on the previous proof, and keep-

ing the same symbols. Again I shall treat only the countable case.

Let Uxn = zn, Uyn= —sin 0„xB+cos0„y„. This defines C/asaunitary

operator. Let F= 1 — 2£3, a symmetry. The ring <B/ generated by

U and V will be shown to be 43.

£3= (1 — V)/2G<R!. As above, one shows first that each £n3C is an

eigenspace of U+ U*, corresponding to the eigenvalue 2 cos 0„; and

therefore that PnG'R!- The last part of the previous proof can be

invoked once it is shown that 4V contains every operator on the 2-

dimensional subspace En3C. But 2£„E3£„£4l' and 2UPnE3PnU*GcR!

are noncommuting projections operating on £„3C.

Ann Arbor, Michigan

* The projections given here do not. In fact, every operator A which is a uniform

limit of polynomials in Ei, Et, and £3, has the special property (among others) that

(Axin, xt„) has a limit as n—> °o. Proof omitted.


