GENERATORS OF THE RING OF BOUNDED OPERATORS

CHANDLER DAVIS

J. A. Dieudonné suggested in conversation that some small number of projections might suffice to generate the ring \mathcal{B} of all bounded operator on *separable* Hilbert space \mathcal{K} . There is some analogy between such a result and the theorem that a compact connected metric group can be generated by two elements. The analogy is still closer for Theorem 2 below.

In this paper, operators A, \cdots will be said to "generate" the smallest ring (i.e., weakly closed self-adjoint algebra) containing A, \cdots and the constants.

THEOREM 1. There exist three projections which generate the ring B. The number three cannot be reduced if K has dimensionality 3 or greater.

If dim $(\mathfrak{X}) = 1$, there is nothing but constants in \mathfrak{B} . If dim $(\mathfrak{X}) = 2$, then any two noncommuting projections generate \mathfrak{B} . Hereafter suppose dim $(\mathfrak{X}) \ge 3$.

I will use what I shall call the closeness operator C = C(E, F) associated with any two projections E, F. It is defined by C(E, F) = 1 - E - F + EF + FE = EFE + (1-E)(1-F)(1-E). It is a positive definite operator which, in case² $E \cap F + E \cap (1-F) + (1-E) \cap F + (1-E) \cap (1-F) = 0$, acts like "the square of the cosine of the angle" between $E \mathcal{R}$ and $F \mathcal{R}$.

To show E and F fail to generate \mathcal{B} , I shall show some nonconstant operator commutes with both; this is enough because such an operator commutes with the whole ring generated by E and F, whereas the commutator of \mathcal{B} contains only constants. Since C(E, F) commutes with E and F, the only case to be considered is C constant. $E\neq 0$ may be assumed. Choose $x=Ex, x\neq 0, x$ otherwise arbitrary. Now the subspace spanned by x and Fx is not zero, and since it is at most 2-dimensional it is not \mathcal{X} ; so the projection P on it is nonconstant. $P\mathcal{X}$ is invariant under E and F, since EFx=EFEx=Cx, which in this case is a multiple of x. Therefore P is a nonconstant operator

Received by the editors September 24, 1954 and, in revised form, January 7, 1955.

¹ H. Auerbach, Sur les groupes linéaires bornées (III), Studia Mathematica vol. 5 (1934) pp. 43-49. J. Schreier and S. Ulam, Sur le nombre des générateurs d'un groupe topologique compact et connexe, Fund. Math. vol. 24 (1935) pp. 302-304.

² Here "∩" is intersection in the lattice of projections. This equation says E3C and F3C are in position p (J. Dixmier, Position relative de deux variétés linéaires fermées dans un espace de Hilbert, Rev. Sci. vol. 86 (1948) pp. 387-399).

commuting with E and F.

Now for the proof of the first sentence in the theorem. Only countable dimensionality will be treated, finite dimensionality is handled similarly. There is a good deal of leeway in the construction; the particular generators E_1 , E_2 , E_3 given here are chosen for convenience.

Let $x_1, y_1, x_2, y_2, x_3, \cdots$ be an orthonormal basis of 3C. Let $z_n = \cos \theta_n x_n + \sin \theta_n y_n$, $n = 1, 2, \cdots$, with $\theta_n = \pi/(2n+1)$. Let P_n be the projection on $[x_n, y_n]$, the subspace spanned by x_n and y_n , $n = 1, 2, \cdots$. Let E_1 be the projection on $[x_1, x_2, x_3, \cdots]$; E_2 , the projection on $[z_1, z_2, z_3, \cdots]$.

Now the ring generated by E_1 and E_2 contains $C = C(E_1, E_2)$. It can be shown by a direct computation that the eigenspaces of C are the P_n %, the corresponding eigenvalues being $\cos^2 \theta_n$. Each eigenvalue is an isolated point of the spectrum; the characteristic function of the set containing only $\cos^2 \theta_n$ is measurable (even continuous) on the spectrum of C. The spectral theorem implies that the ring contains all the P_n . Also the ring contains every operator on P_n %, for on that 2-dimensional Hilbert space E_1 and E_2 are noncommuting projections (see the remark at the beginning of the proof).

Finally, define E_3 as the projection on

$$[x_1 + x_2, y_2 + y_3, \cdots, x_{2n-1} + x_{2n}, y_{2n} + y_{2n+1}, \cdots].$$

The ring \mathcal{R} generated by E_1 , E_2 , and E_3 will be shown to be \mathcal{B} .

Let E(x; y) denote, for any unit vectors x and y, the operator characterized by

$$E(x; y)x = y,$$

$$z \perp x \text{ implies } E(x; y)z = 0.$$

Also hereafter let w_n mean either x_n or y_n , $n = 1, 2, \cdots$.

 \mathcal{R} contains $E(x_{2n-1}; x_{2n})$. For it contains the projection on $[x_{2n-1}]$, and premultiplying that projection by $2P_{2n}E_3$ gives the desired operator. Therefore \mathcal{R} contains $E(w_{2n-1}; w_{2n})$, and necessarily also its adjoint, $E(w_{2n}; w_{2n-1})$. Similarly, \mathcal{R} contains $E(y_{2n}; y_{2n+1})$, hence $E(w_{2n}; w_{2n+1})$ and $E(w_{2n+1}; w_{2n})$. By induction, $E(w_i; w_j) \in \mathcal{R}$. Therefore \mathcal{R} contains every operator whose matrix, using the originally given orthonormal basis of \mathcal{R} , has finitely many nonzero entries.

Let $A \in \mathcal{B}$, and let

$$A_n = \sum_{1}^{n} P_k A P_k.$$

Then $A_n \in \mathbb{R}$, and A is the weak limit of the A_n , so $A \in \mathbb{R}$. It has been proved that $\mathbb{R} = \mathbb{B}$.

(Weak closure of R was required only in the last paragraph of the proof; uniform closure was all that was used before. I do not know if there exist three projections which generate B by algebraic operations and *uniform* limits.³)

THEOREM 2. There exist two unitary operators which generate B. They may be chosen so one of them is a symmetry.

This will be proved relying largely on the previous proof, and keeping the same symbols. Again I shall treat only the countable case.

Let $Ux_n = z_n$, $Uy_n = -\sin \theta_n x_n + \cos \theta_n y_n$. This defines U as a unitary operator. Let $V = 1 - 2E_3$, a symmetry. The ring R' generated by U and V will be shown to be B.

 $E_3 = (1-V)/2 \in \mathbb{R}'$. As above, one shows first that each $P_n\mathfrak{R}$ is an eigenspace of $U+U^*$, corresponding to the eigenvalue $2\cos\theta_n$; and therefore that $P_n \in \mathbb{R}'$. The last part of the previous proof can be invoked once it is shown that \mathbb{R}' contains every operator on the 2-dimensional subspace $P_n\mathfrak{R}$. But $2P_nE_3P_n \in \mathbb{R}'$ and $2UP_nE_3P_nU^* \in \mathbb{R}'$ are noncommuting projections operating on $P_n\mathfrak{R}$.

ANN ARBOR, MICHIGAN

^{*} The projections given here do not. In fact, every operator A which is a uniform limit of polynomials in E_1 , E_2 , and E_3 , has the special property (among others) that (Ax_{2n}, x_{2n}) has a limit as $n \to \infty$. Proof omitted.