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1. Introduction. Given an arbitrary countably infinite loop G, does

there exist a planar ternary ring whose additive or multiplicative

loop is isomorphic to G? The author is grateful to Professor Trevor

Evans for pointing out this question, and is prepared to answer it in

the affirmative. In fact, either the additive loop, the multiplicative

loop, or both can be arbitrary; furthermore, if G is any countably

infinite group, then there is a linear planar ring whose additive loop

is isomorphic to G.

2. Addition and multiplication arbitrary. If £ is a nonempty set

with distinct elements 0 (zero) and 1 (one, or the identity), and £ is

a ternary operation such that F(a, b, c) is in £ for all a, b, cGR, and

if (A)-(E) below are satisfied, then (£, £) is called a planar ternary

ring (see [l, 2]).

(A) F(a, 0, c) = £(0, b, c) =c, for all a, b, cGR.
(B) F(a, 1, 0) =£(1, a, 0) =a, for all aGR.

(C) If a, b, c, dGR, aj^c, then there is a unique x££ for which

£(x, a, b)=F(x, c, d).

(D) If a, b, cGR, then there is a unique x££ for which F(a, b, x)

= c.

(E) If a, b, c, dGR, aj^c, then there is a unique (ordered) pair

x, yGR for which F(a, x, y) =b, F(c, x, y) =o\
We define addition in £ by a + 6 = £(l, a, b), and multiplication by

ab = F(a, b, 0). Then the set £, under addition, forms a loop with

"identity" 0, and the set £* of nonzero elements of £, under multi-

plication, forms a loop with identity 1. (Sometimes a+b is defined as

F(a, 1, b), as in [l ]; the following results carry through as well in this

case.) These loops are called the additive and multiplicative loops,

respectively.

Now suppose £ is (without loss of generality) the set of nonnegative

integers, and an additive loop is defined on £, with "identity" 0; sup-

pose also that a multiplicative loop is defined on the set £* of positive

integers, with identity 1. We wish to define a ternary operation £ on

£ such that F(a, b, 0)=ab if a, 6££*, £(1, a, b)=a + b for all a,
bGR, and such that (A)-(E) are satisfied.
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Let us define F(a, 0, c) = F(0, ft, c)=c, for all a, ft, cER; F(l, a, ft)
= a+b, for all a, bER; F(a, ft, 0) =aft, for all a, bER*. Then it is easy
to see that (A) and (B) are satisfied and, in fact, cannot be contra-

dicted no matter how F is defined for the remaining triples; further-

more (C)-(E) are not contradicted.

Our work is simplified by the following:

Lemma 1. In the axioms of a planar ternary ring, (E) can be replaced

by (E1).

(E') If a, ft, c, dER, a^c, then there is at least one pair x, yER

for which F(a, x, y) = ft, F(c, x, y) = d.

Proof. Suppose F(a, x, y) =b = F(a, u, v), F(c, x, y) =d = F(c, u, v),

where a^c. Iix = u,y7£v, then F(a, x, y) =b = F(a,x, v), which contra-

dicts (D); so we assume x^u. But then the equation F(z, x, y)

= F(z, u,v), Xt^u, has the two distinct solutions z = a, z = c, which con-

tradicts (C). So x — u, y=v, and we are done.

Hence in order to define our planar ternary ring, it is sufficient to

assure that all equations of type (C) and (D) have unique solutions,

and that all equations of type (E) have at least one solution. Let us

well-order all 4-tuples (a, ft, c, d), a?*c, and all 3-tuples (a, ft, c),

where a, ft, c, dER- Then we shall proceed through the ordering,

"solving" equations as we go.

At any point in the process, note that if a^O, 1, 6^0, cy^O, then

F(a, ft, c) is defined for only finitely many a, ft, c.

I. Equations of type (C). Suppose (a, ft, c, d), aj^c, is the first 4-tuple

for which F(x, a, ft) = F(x, c, d) has no solution x.

Case 1. Suppose a, ft, c, d all nonzero. Let n be any element for

which F(n, a, ft) and F(n, c, d) are not yet defined. If F(n, a, b)=p

= F(n, c, d) contradicts (C) or (D), then at least one of the following

holds:

(1) p = F(n, u, v), F(k, a, ft) = F(k, u, v),      uj^a,k^ n.

(2) p = F(n,u,v), F(k,c,d) =F(k,u,v),       u^c,k-An.

(3) F(n, a,g) = p, g* ft.

(4) F(n, c,g) = p, g^ d.

Consider (1). Unless u = 0 or v =0, there are only finitely many u, v

for which F(n, u, v) is defined, whence (1) is possible for only finitely

many p. If u =0, then F(k, a, ft) =p, but F(k, a, 6) is defined for only

finitely many k, so again (1) is satisfied for only finitely many p. If

f = 0, then p=nu, F(k, a, 6) —ku. If k^0, then this is possible for only

finitely many k, hence for finitely many u, hence for finitely many p.
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If k=0, then (1) implies 0 = 0, which is contradictory. So (1), and

similarly (2), are possible for only finitely many p.

Clearly (3) and (4) are possible for only finitely many p. So

we can, by avoiding a finite set of values for p, define £(ra, a, b)

= F(n,c,d)=p.

Case 2. If a = 0, then we wish to satisfy the equation £(x, c, d) —b.

Suppose ra is an element for which £(ra, c, d) is not defined. (Note that

c?^0, d^O, b.) Then £(ra, c, d) =b leads to a contradiction only if one

of the following holds:

(5) b = Fin, ra, v), Fik, c, d) = Fik, u, v),      u 7^ c, k ^ n.

(6) Fin, c,g)=b, g* d.

Consider (5). Unless ra=0 or v = 0, £(«, u, v) is defined for only

finitely many ra, hence (5) holds for only finitely many w. If u=0, then

(5) becomes F(k, c, d)=b, which contradicts our assumption that

£(x, c, d)=b has no solution. If v = Q, then (5) becomes b = nu,

Fik, c, d) =ku. If k^O, then this defines a finite set of elements u,

hence a finite set of elements ra; if k = 0, then (5) implies d = 0, which is

contradictory. So, in all cases, (5) is satisfied for only finitely many ra.

Clearly (6) is satisfied for only finitely many ra.

Case 3. If 0 = 0, then we wish to satisfy xa = £(x, c, d); note that

C9^0, oV0. If ra is an element such that £(«, c, d) is not defined yet,

and if £(«, c, d) =na, then we are led to a contradiction only if one of

the following holds:

(7) na = F(w, u, v), Fik, c, d) = Fik, u, v),    u y^ c, k 9^ n.

(8) F(n, c, g) = na, g ^ d.

Consider (7). As before, £(ra, ra, v) is defined for only finitely many

ra, unless ra = 0 or v — Q. If ra = 0, then (7) becomes F(k, c, d)=na,

which is possible for only finitely many ra, since F(k, c, d) is defined

for only finitely many k. If v = 0, then na = nu, or a = u, and F(k, c, d)

= ka, which contradicts our assumption that £(x, c, d)—xa has no

solution. So (7) is always satisfied for only finitely many ra.

Clearly (8) is possible for only finitely many ra.

So, in all cases, an equation of type (C) can always be solved in a

"non-contradictory" fashion.

II. Equations of type (E). Suppose (a, b, c, d), a^c, is the first

4-tuple for which F(a, x, y) =6, F(c, x,y)=d has no solution.

Case 1. Suppose a^0, 1, c^0, 1. Suppose m and ra are elements

such that F(a, m, ra), F(c, m, n) are not yet defined. Then F(a, m, ra)

= b, F(c, m,n)=d leads to a contradiction only if one of the following

holds:
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(1) ft = F(a, u, v), F(p, m, n) = F(p, u, v),    u j* m, p ?± a.

(2) d = F(c, u, v), F(p, m, n) = F(p, u, v),    u j* m, p j* c.

(3) F(a, m, g) = ft, g ^ n.

(4) F(c, m, g) = d, gj± n.

Consider (1). F(a, u, v)=b holds for only finitely many u, v, and

for all but finitely many m, n, F(p, m, n) is defined only if p =0 or 1.

But then n=v (if p = 0) and m+n—u+v {ji p — 1) is possible for only

finitely many m, n. So (1), and similarly (2), are possible only for

finitely many m, n. (Note that neither m nor n is zero.)

Clearly (3) and (4) are only possible for finitely many m.

Case 2. Suppose a = 0. Then c^O, 1. If F(c, n, ft) is not yet de-

fined, then F(c, n, b)=d leads to a contradiction only if one of the

following occurs:

(5) d = F(c, u, v), F(k, n, ft) = F(k, u, v),    u ^ n, k t£ c.

(6) F(c, n,g) = d, g^ ft.

Consider (5). If «=0, then this becomes F(k, n, ft) =d. Ii k = 0, then

ft = d, and F(c, 0, ft) —d, contrary to our assumption that F(c, x, ft) has

no solution. If k = l, then n+b = d, which is possible for exactly one n.

If k^O, 1, then F(k, n, ft) =d holds for finitely many k, unless ft=0;

but ft = 0 implies that F(c, x, b)—cx = d already has a solution. So

F(k, n,b)=d holds for only finitely many ».
Ii v = 0, then d = cu, F(k, n, ft) =ku. If k — 0, then 6 = 0, and again

F(c, x,b)=d already has a solution. If k = l, then n+b = u, d=cu, and

this defines exactly one n. If k^O, 1, then c = du defines exactly one u,

and F(k, n, ft) =ku defines finitely many k and n (unless ft=0, which

is impossible).

If U9^0, V9^0, then d = F(c, u, v) holds for at most finitely many u,

v, and F(k, u, v) is defined for at most finitely many k. So F(k, n, ft)

= F(k, u, v) holds for only finitely many n.

Clearly (6) holds for at most finitely many n.

Case 3. Suppose o = l, whence c^O, 1. Then we wish to solve

x+y = ft, F(c, x, y) =d. Note that ft5*d, for otherwise x = 0, y=ft would

be a solution. If m and n are elements such that m+n = b, and

F(c, m, n) is not defined (there must be such elements, since there are

infinitely many m and w for which m+n = b), then F(c, m,n)=d leads

to a contradiction only if one of the following holds:

(7) d = F(c, u, v), F(k, m, n) = F(k, u, v),    k ^ c, u ^ m.

(8) F(c, m,g) = d, g^ n.
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Consider (7). If w=0, then F(k, m, n)=d; but £(1, m, n)=b,

F(k, m, n)=d is possible for only one pair m, ra, and F(k, m, ra) is de-

fined for only finitely many k, unless k = l. But k = l implies m+n

= d = b, which is contradictory.

If v = 0, then d = cu, F(k, m, ra) =ku. It k = 0, then ra = 0, m = b, and

F(c, b, 0)=d, which contradicts our assumption that F(c, x, y)—d,

x+y = b has no solution. If k = l, then m+n=u=b, so d = cb; hence

£(1, 0, 0)=0, F(c, b, 0)=d, which is contradictory. If ky^O, 1, then

d = cu defines one u, and F(k, m, ra) =ku defines finitely many k, hence

finitely many m (for F(k, m, ra) is defined for only finitely many k,

m, ra).

If uy*0, vy*0, then d = F(c, u, v) is possible for at most finitely

many ra, v. Hence F(k, u, v) = F(k, m, ra) is possible for at most finitely

many m, n (where we recall that m+n = l).

Clearly (8) is possible for only finitely many m, ra.

So we can always solve an equation system of type (E) in a "non-

contradictory" fashion.

III. Equations of type (D). Suppose (a, b, c) is the first 3-tuple for

which £(a, b, x) = c has no solution. Note that ay±0, 1, by*0, aby^c. If

ra is an element such that F(a, b, ra) is not defined, then F(a, b,n)=c is

contradictory only if:

(1) c = F(a, u, v), F(p, b, n) = F(p, u, v),     p y± a,u9* b.

If ra=0, then F(p, b, n)=c. If p = 0, then we must have n—c; if

p = l, then we have b+n = c. If py^O, 1, then F(p, o, ra)=c is possible

for only finitely many p and w.

If v = 0, then c=au, F(p, b, n)=pu, and as above, this defines at

most finitely many ra.

If uy^O, v?£0, then F(a, u, v) is possible for only finitely many u, v.

If p=0, then n=v, and if p = l, then b+n=u+v. If py^O, 1, then

F(p, 6, ra) = F(p, u, v) holds for at most finitely many p and ra.

So only finitely many ra satisfy (1), so we can solve an equation of

type (D) in a "noncontradictory" fashion.

IV. Remaining equations. If (a, 6, c) is the first 3-tuple such that

F(a, b, c) is not defined, then note that a^O, 1, by^O, cy±0. £(a, b, c)

— n is contradictory only if one of the following holds:

(1) ra = F(a, u, v), F(k, b, c) = F(k, u, v),      k y± a, u y± b.

(2) Fia, b,g) = ra, g * c.

Consider (1). If u = 0, then Fik, b, c) =ra, which is possible for at

most finitely many ra. If v = 0, then n = au, F(k, b, c) = ku; if k = 0, then

c = 0, which is contradictory; if k — 1, then b+c = u, au = n, which is



978 D. R. HUGHES [December

possible for only one n. If k^O, 1, then F(k, ft, c) =ku is possible for

only finitely many k and u, hence n=au is possible for only finitely

many n.

If Ur^O, v5^0, then F(a, m, ») is defined for only finitely many u, v,

so F(a, u, v)—n is possible for only finitely many n.

Clearly (2) holds for at most finitely many n, so we can define

F(a, ft, c) in a "noncontradictory" fashion.

Thus, by repeating the cycle of these four steps, it is clear that we

can define (R, F) to be a planar ternary ring. It is fairly obvious that

either the additive or the multiplicative loop could have been

omitted in the construction.

3. Associative addition. Suppose R is a countable group under the

operation ( + ), with "identity" 0 (zero). We wish to define a planar

ternary ring (R, F) whose additive loop is given by (+), and which

is linear; i.e., F(a, ft, c)=ab + c, for all a, 6, cER. Note that this

demands Hall's Theorem L in a special sense in the projective plane

coordinatized by (R, F).

Let 1 be some fixed nonzero element of R, and define 0a=a0 = 0,

all aER, and la = al =a, all aER. Since (R, F) is to be linear with

associative addition, the equations of type (C) can be replaced by

equations xa = xb + c, a^b; the equations of type (E) can be replaced

by ax = b+cx, a^c, and the equations of type (D) are automatically

satisfied.
Suppose xa=xb + c, a^b, has no solution; note that then a, ft, and c

must be nonzero.

If a = l, and n is an element such that nb is not yet defined, then

nb = n — c is contradictory only if:

(1) n — c = nu + v, kb — ku + v, u 9^ b, k ^ n.

If w = l, then v= —c, and kb + c = k, which contradicts our assump-

tion that x—xb + c has no solution. If m = 0, then n — c=v, n = kb+c;

but this holds for only finitely many n. If u?±0, 1, then (1) becomes

(by subtraction) n=nu — ku+kb+c; since nu is defined for only

finitely many n, this is possible for only finitely many n.

Ii a^l, ct^I, and n is an element such that na and nb are not yet

defined, then na = nb+c = p (for a fixed n) is contradictory only if

one of the following holds:

(2) p = nu + v, ka = ku + v, k 7^ n, a j£ u.

(3) p — c = nu + v, kb = ku + v, k j£ n,b -A u.

Eliminating v in each pair, we therefore demand:
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(4) p y± nu — ku + ka, if k y* n, a y* u.

(5) p yi nu — ku + ka + c, it k y± n, b y* u.

Consider (4). For a fixed ra, nu is defined for only finitely many u,

and ka is defined for only finitely many k, so (4) holds for all but

finitely many p. Similarly for (5).

Now suppose ax = b+cx, ay^c, has no solution; as before, then, a, b,

and c are all nonzero.

If a = l, and ra is an element such that era is not yet defined, then

cra= —o+ra leads to a contradiction only if:

(6) — b + n = cu + v, kn = ku + v, k y^ c, u y± n.

If k = l, then (6) implies u = b + cu, which contradicts our assump-

tion that x — b+cx has no solution. If &=0, then d = 0, n = b+cu, but

this is possible for only finitely many ra, since cy^l. If ky*0, 1, then

(6) becomes n = b+cu — ku+kn; since kn is defined for only finitely

many ra, this is possible for only finitely many ra.

If a 5*1, cy±l, and ra is an element such that an, cn are not yet

defined, then an = b+cn=p (for a fixed ra) is contradictory only if one

of the following holds:

(7) p = au + v, kn ■= ku + v, k y$ a, u y* n.

(8) — b + p = cu + v, kn = ku + v, k y± c, u 5* ra.

These can be handled exactly like our treatment, of (4) above.

Finally, if ab is not yet defined (whence certainly a 5*0, 1, by^O, 1),

then ab = p is contradictory only if:

(9) p = au + v, kb = ku + v, k y* a, u y* b.

Again, this can be treated like (4).

Hence by a cyclic repetition of the above three steps, proceeding

through a well-ordering of 3-tuples and 2-tuples, we can define

multiplication such that the ternary ring (£, £) given by F(a, b, c)

= ab+c is planar.

The author does not know whether an arbitrary countable loop

can be the additive loop of a linear planar ring; since this would imply

that any additive condition whatsoever (in countable loops, at least)

was compatible with Theorem L, one might conjecture that it is not

possible.

Added in proof. 1. The construction of a linear planar ring whose

additive loop is an arbitrary (countable) group gives a solution to

the following problem, which has already been solved by Pickert
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(Nichtkommutative cartesische Gruppen, Archiv der Mathematik vol.

3 (1952) pp. 335-342) in a slightly different fashion: does there exist

an affine plane with a noncommutative group of translations? Using

the coordinatizing scheme of [2], the mappings <px given by <bx:

(a, b)->(a, b+x),4>x: [m, k]-+[m, k+x],<px: [oo, (k, 0)]—>[oo, (k, 0)],

are all translations, and in fact, form a group isomorphic to the addi-

tive group of the planar ring.

2. The construction of a planar ternary ring with arbitrary addi-

tive loop can easily be generalized so that any finite set of mutually

orthogonal latin squares of countably infinite order can be extended

to a complete set of mutually orthogonal latin squares. For details of

the correspondence between the latin squares and the ternary ring,

see [2].
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