ON THE MAXIMAL DILATION OF QUASICONFORMAL MAPPINGS

KURT STREBEL

1. Let G and G' be two plane open sets and w(z) a topological mapping of G onto G'. By Q we denote any quadrilateral in G, i.e. the topological image of a closed square with a distinguished pair of opposite sides. The conformal modulus m of Q is the ratio m=a/b of the sides of a conformally equivalent rectangle R, the distinguished sides of Q corresponding to the sides of length p. We call this essentially unique conformal mapping of Q onto R the canonical mapping of Q. The modulus p is equal to the extremal distance of the two distinguished sides of Q with respect to Q. The maximal dilation of the mapping p of p is the number

$$K[w(z)] = K = \sup_{Q} \frac{m'}{m}$$

where m' denotes the modulus of the image Q' of Q under the mapping w(z) and Q varies over all possible quadrilaterals. The mapping is said to be quasiconformal if K is finite.

Given a closed subset $E \subset G$ (closed only with respect to G). Then, G-E is open, and if we denote by $K_0[w(z)]=K_0$ the maximal dilation of w(z) on G-E, we get $K_0 \leq K$. We are looking for sufficient conditions on E such that $K_0 = K$. The answer will be different if we consider only the class of all quasi-conformal mappings of G or the larger class of all topological mappings, including the ones with infinite maximal dilation. We call a point set E which allows the conclusion $K_0 = K$ deletable for the class in consideration. It was proved by Ahlfors in [1] that analytic arcs are deletable for the class of all topological mappings. It is also proved there that $K = \sup_{G} m'/m$, where G denotes any analytic quadrilateral, i.e. a quadrilateral G with a canonical mapping which is conformal in an open neighborhood of G, and furthermore that G does not become larger if the boundary curves of the quadrilaterals are allowed to have points in common with the boundary of G.

2. If E is a discrete point set, we can consider the slightly more general problem that $w_0(z)$ is only known to be quasiconformal with maximal dilation K_0 on G-E, without knowing that $w_0(z)$ is a topological mapping of the whole open set G. What are the conditions on

Presented to the Society, February 26, 1955; received by the editors November 8, 1954 and, in revised form, December 31, 1954.

¹ Theorem 4, p. 9.

E in order that for every $w_0(z)$ there is a topological mapping w(z) of G which coincides with $w_0(z)$ on G-E and has the same maximal dilation. We call w(z) the continuation of $w_0(z)$. It is clear that there can exist only one topological continuation.

THEOREM 1. A necessary and sufficient condition that every quasiconformal mapping $w_0(z)$ of G-E has a continuation to G with the same maximal dilation is that every compact subset of E is a nullset O_{AD} .²

The condition is necessary, for, if E_0 is any compact subset of E which is not a set O_{AD} , there exists a parallel slit mapping of the complement of E_0 , which is conformal outside E_0 and cannot be extended conformally over E_0 .

If, on the other hand, E possesses the property of the theorem, then to every point $z_0 \subset E$ there exists a sequence of nonoverlapping doubly connected ring-domains in G-E with a divergent sum of moduli $\mu_i(\mu_i = \text{extremal distance of the two boundary components of a ring domain), a property which is invariant under the quasiconformal mapping of <math>G-E$. But a boundary component with this property must necessarily be a point. Therefore every point of E goes over into a point, and it is readily seen that $w_0(z)$ has a topological continuation w(z) over E. It follows from the succeeding lemma that the maximal dilation of w(z) on G is K_0 .

LEMMA 1. If Q is an analytic quadrilateral in G and E_0 a compact O_{AD} set in Q, then to every $\epsilon > 0$ there exists a finite system of simply connected, nonoverlapping longitudinal³ strips S_i , $S_i \subset Q - E_0$ with modulus m_i , such that $\sum_i 1/m_i \ge 1/m - \epsilon$.

From that we get, because of $m_i' \leq K_0 m_i$,

$$\frac{1}{m'} \ge \sum_{i} \frac{1}{m'_{i}} \ge K_{0}^{-1} \sum_{i} \frac{1}{m_{i}} \ge K_{0}^{-1} \left(\frac{1}{m} - \epsilon\right)$$

and therefore

$$m' \leq K_0 m$$

for each analytic quadrilateral in G.

The lemma can be proved in the same way as Theorem 9 in Ahlfors and Beurling [2]. We map Q onto a rectangle R with sides a and b by means of its canonical conformal mapping. E_0 is transformed

² I.e. a set which allows no nonconstant and single-valued analytic function with a bounded Dirichlet-integral in its complement.

³ That is to say the boundary of S_i has an interval in common with each distinguished side of Q_i , S_i is therefore a quadrilateral with these intervals as distinguished sides.

into a set O_{AD} which we denote by E_0' . To any given $\epsilon > 0$ we can find a concentric rectangle R' with sides a' > a and b' < b and such that $b'/a' \ge b/a - \epsilon/2$. A curvilinear rectangle R'' which is contained in the rectangle with sides a', b and contains the rectangle with sides a, b' and the sides of which do not meet E_0' can be constructed; we choose its distinguished sides outside R and such that its modulus is $\le a'/b'$. The set $E_0' \cap R''$ is a compact subset of the open rectangle R'', and by an exhaustion we can obviously find the strips S_i'' in R'' with $\sum_i 1/m_i'' \ge 1/m'' - \epsilon/2$. Each S_i'' contains a longitudinal strip S_i of the original rectangle R with modulus $m_i \le m_i''$. Therefore we get

$$\sum_{i} \frac{1}{m_{i}} \geq \sum_{i} \frac{1}{m_{i}'} \geq \frac{1}{m''} - \epsilon/2 \geq b'/a' - \epsilon/2 \geq b/a - \epsilon = \frac{1}{m} - \epsilon.$$

3. For the composition of piecewise quasiconformal mappings however the stress lies on connected, not on discrete point sets. To get an answer in this direction, we consider a rectangle R in the z-plane $(0 \le x \le a, \ 0 \le y \le b)$ and a topological mapping w(z) of R onto a rectangle R' in the w-plane $(0 \le u \le a', \ 0 \le v \le b')$ which preserves the four sides respectively. By E_y we denote the intersection of the line $\Im z = y$ with the given closed set E in R, and by $L_u(y)$ the linear measure of the vertical projection (i.e. onto the u-axis) of the w-image E_y' of E_y . The modulus of a horizontal rectangle is its length divided by its height; the modulus of its w-image has to be taken with respect to the sides which correspond to the vertical sides of the rectangle.

LEMMA 2. If (1) the modulus m of every horizontal rectangle in R which has no interior point in common with E and the modulus m' of its image satisfy $m' \le Km$, where K is some positive constant, and

(2) the linear measure $L_u(y)$ of the vertical projection of E'_v is zero for almost every y, we have

$$a'/b' \leq Ka/b$$
.

PROOF. For any $\epsilon > 0$ the set O_{ϵ} of all values y with $L_u(y) < \epsilon$ is open in $0 \le y \le b$ and has linear measure b. For any $y \in O_{\epsilon}$ we can find an interval $y_1 < y < y_2$ and a family of finitely many rectangles R_{ϵ} with sides on $\Im z = y_1$ and $\Im z = y_2$ which contain every E_y for $y_1 < y < y_2$ and such that their w-images have a vertical projection of total linear measure less than ϵ . Let now B be a closed subset of O_{ϵ} of measure $> b - \epsilon$. We have an open covering of B by means of intervals β of the above kind, and by the Heine-Borel theorem there exists a finite covering, say β_1, \dots, β_n . Starting with β_1 and the rectangles in the corresponding horizontal strip $(0 \le x \le a, y \in \beta_1)$, we take in

every new interval β_i only that part which does not lie in one of the former intervals, and restrict the corresponding horizontal strip and its rectangles in the same way. We get a system of finitely many strips S_i of height b_i with total vertical measure $\sum_i b_i \ge b - \epsilon$. The rectangles T_{ij} in S_i , complementary to the rectangles R_{ij} in S_i , have no interior point in common with E and thus their moduli satisfy $m'_{ij} \le Km_{ij}$. As the vertical projection of the images R'_{ij} of the R_{ij} has a total linear measure $<\epsilon$, there exist finitely many closed, disjoint intervals on the u-axis of total measure $<\epsilon$ covering this projection. We denote the complementary intervals on the u-axis by α'_{ij} , their length by a'_{ij} : we have $\sum_i a'_{ij} > a' - \epsilon$. Each α'_{ij} is spanned by the image T'_{ij} of at least one T_{ij} , and the modulus of this T'_{ij} is therefore $\ge a''_{ij}/A'_{ij}$, A'_{ij} denoting the area of (the interior of) T'_{ij} . From that we get for each strip S_i

$$\frac{a}{b_i} \ge \sum_{j} m_{ij} \ge \frac{1}{K} \sum_{j} m'_{ij} \ge \frac{1}{K} \sum_{j} \frac{{a'_{ij}}^2}{A'_{ij}}$$
$$\ge \frac{1}{K} \left(\sum_{j} a'_{ij} \right)^2 / \sum_{j} A'_{ij} \ge \frac{1}{K} \frac{(a' - \epsilon)^2}{A'_{ij}}$$

with A_i' = area of S_i' . Taking the reciprocals and summing up we get

$$\frac{b-\epsilon}{a} \leq \frac{\sum_{i} b_{i}}{a} \leq K \frac{\sum_{i} A'_{i}}{(a'-\epsilon)^{2}} \leq K \frac{a'b'}{(a'-\epsilon)^{2}}$$

and therefore

$$b/a \leq K(b'/a')$$

which proves the lemma.

Let E be an arbitrary set of finite linear measure L in R. Then it is readily proved that the set of values y where E_y consists of at least N points has linear measure $\leq L/N$, and therefore the set of y where E_y consists of infinitely many points has measure zero. If E is of Σ -finite measure, i.e. the sum of denumerably many sets E^i of finite linear measure, the set of values y for which E_y consists of nondenumerably many points has linear measure zero. But for any y where E_y is denumerable, the image set is denumerable and so is its projection, therefore $L_y(y) = 0$. As the property to be of Σ -finite linear measure is carried over by a conformal mapping of the closed quadrilateral, we get the

THEOREM 2. If E is a closed subset of G of Σ -finite linear measure and w(z) any topological mapping of G, its maximal dilation on G is equal

to its maximal dilation on G-E, that is to say E is deletable for the class of all topological mappings of G.

If $E = E^1 + E^2$ is the sum of a closed set E^1 of Σ -finite linear measure and a closed set E^2 , every compact subset of which is a nullset O_{AD} , then it is clear from the construction that E is deletable. We can first delete $E^1 - E^2$, which is a closed set of $G - E^2$, and then E^2 .

From Theorem 2 we get the following generalization of Theorem 13 in Ahlfors and Beurling [2]:

COROLLARY. A closed, discrete point set E of the complex plane, which is of Σ -finite linear measure, is a nullset O_{SB}^4 if and only if it is a nullset O_{AD} .

For, if it is a nullset O_{SB} every schlicht conformal mapping of the complement of E is continuous on E and has therefore a conformal continuation, i.e. is a linear transformation. But this is known to be a sufficient condition for a closed discrete pointset to be an O_{AD} set. The converse is obvious.

4. If the mapping w(z) is not only known to be topological in G but quasiconformal, that means has finite maximal dilation, and if outside E the maximal dilation is K_0 , the point sets E which allow us to conclude $K_0 = K$ are much larger.

LEMMA 3. Let w(z) be a topological mapping of R onto R' as in Lemma 2. If the two following conditions are fulfilled:

- (1) For every horizontal rectangle in R and a certain positive number K we have $m' \leq Km$;
- (2) E is of two-dimensional measure zero; then the linear measure L(y) of E'_y is zero for almost every y.

PROOF. If this were not the case, we could find a closed subset B of $0 \le y \le b$ of positive linear measure h and a positive number l such that the linear measure of E_y would be zero while the linear measure of E_y' would be $L(y) \ge l$ for every $y \in B$. This is so because L(y) is a measurable function of y and the linear measure of E_y is zero for almost all y.

If $y \in B$ is arbitrary, we can cover E_y by finitely many open (relatively to $0 \le x \le a$) intervals α_j of length a_j . The images have length a_j' . We then take an interval $y_1 < y < y_2$ and consider the rectangles $R_j(x \in \alpha_j, y_1 \le y \le y_2)$. We call them the rectangles corresponding to the intervals α_j in the horizontal strip $(0 \le x \le a, y_1 \le y \le y_2)$. Every R_j is mapped onto a quadrilateral R_j' and we denote by l_j the inf.

⁴ I.e. the complement allows no schlicht, bounded conformal mapping.

of the length of all curves joining the two distinguished sides in R'_j , by F_j the area of the open R'_j . Because E_v is of measure zero and $\sum_i a'_i \ge l$, it is clear that, given any $y \in B$, we can choose the α_j and afterwards $y_1 < y < y_2$ in such a way that

$$\sum_{i} a_{i} \leq \epsilon$$
 and $\sum l_{i} \geq l - \epsilon$.

The intervals $y_1 < y < y_2$ provide us with an open covering of B from which we get a finite covering. As in Lemma 2 the restriction to distinct strips S_i does not change the above two conditions, and we have for any strip S_i (with its intervals α_{ij} of length a_{ij} and the corresponding rectangles R_{ij} with moduli m_{ij}) the following estimates:

$$\frac{a_{ij}}{b_i} = m_{ij} \ge \frac{1}{K} m'_{ij} \ge \frac{1}{K} \frac{l_{ij}^2}{F_{ij}}.$$

Therefore

$$\frac{\epsilon}{b_i} \ge \sum_j a_{ij}/b_i \ge \frac{1}{K} \sum_j \frac{l_{ij}^2}{F_{ij}} \ge \frac{1}{K} \left(\sum_j l_{ij}\right)^2 / \sum_j F_{ij} \ge \frac{1}{K} \frac{(l-\epsilon)^2}{\sum_i F_{ij}} \cdot$$

Taking reciprocals and summing up we get

$$\frac{h}{\epsilon} \leq \sum_{i} b_{i}/\epsilon \leq K \sum_{ij} F_{ij}/(l-\epsilon)^{2} \leq K \frac{a'b'}{(l-\epsilon)^{2}}.$$

As $\epsilon \rightarrow 0$ we conclude h = 0, q.e.d.

With exactly the same method but less rough estimates we can get the following result:

LEMMA 3'. Let E be any closed set in R, B a closed subset of $0 \le y \le b$ of measure h and such that for $y \in B$ the linear measure of E_y is $\le l$ while the linear measure of E_y' is $L(y) \ge l'$. Let F denote the area of the closed set $\bigcup_{y \in B} E_y'$. Then we have

$$l/h \geq K^{-1}(l'^2/F).$$

For l=0, l'>0 we get h=0, i.e. the above theorem. For $l'=\infty$ (we have to replace $l'-\epsilon$ by a number < l' in the proof) and l=a we get h=0.

COROLLARY. The set of values y for which the image curve of the segment $\Im z = y$ is not rectifiable is of measure zero.

THEOREM 3. If E is a closed subset of G of two-dimensional measure zero and w(z) any quasiconformal mapping of G, its maximal dilation on G-E is equal to its maximal dilation on G. In other words, a closed set of zero area is deletable with respect to all quasiconformal mappings of G.

PROOF. We consider any analytic quadrilateral $Q \subset G$ and map it as well as its image Q' conformally onto the rectangles R and R' respectively. As the set E_1 in R which corresponds to the part $E \cap Q$ of the exceptional set E in G is closed and of zero area, the conditions of Lemma 3 are fulfilled. From Lemma 3 we conclude that the conditions of Lemma 2 with the constant K_0 are fulfilled. From Lemma 2 we get therefore

$$a'/b' \le K_0(a/b)$$
 q.e.d.

5. Another application of the same method leads to the following Lemma 3'': A topological mapping of R onto R' with the property (1) of Lemma 3 is absolutely continuous on almost every horizontal line.

The set of all y for which the length $L_{\eta}(\xi)$ of the image of the stretch $(0=x=\xi,\ y=\eta)$ is not absolutely continuous in ξ is measurable. If it were not of measure zero, there would exist a closed set B on the interval $0 \le y \le b$ of positive linear measure h and a number l such that for every y in B the corresponding horizontal stretch carries a system of intervals of total length $<\varepsilon$ while their images have total length $\ge l$. The rest of the proof is a repetition of the one given for Lemma 3. Lemma 3" proves the theorem on absolute continuity of quasiconformal mappings which was announced in the Bull. Amer. Math. Soc. Abstract 61-3-421, by the same author.

REFERENCES

- 1. L. Ahlfors, On quasiconformal mappings, Journal d'Analyse Mathématique vol. 3 (1953/1954) pp. 1–58.
- 2. L. Ahlfors and A. Beurling, Conformal invariants and function-theoretic null-sets, Acta Math. vol. 83 (1950) pp. 101-129.

INSTITUTE FOR ADVANCED STUDY