
A GENERALIZATION OF THE POISSON TRANSFORM1

CHARLES STANDISH

In this paper we shall obtain inversion formulas in terms of differ-

ential operators for the transforms

1   r  A(z - I) + B

m /w - 7/crr^T^c)
where a(t) is of bounded variation in every finite interval, and

1   r  A(z-t) + B
(2) /W-7J 7^T^*(,)i'

where <p(t) is Lebesgue integrable in every finite interval. In both cases

the integral is to be interpreted as

lim       f
B-»»,S-»»   J—S

When limits are omitted from an integral appearing in the text the

range of integration is understood to be (— co, 00).

At the conclusion of the paper we shall give a complex inversion

formula for (2).

The preceding transforms include as special cases the Poisson trans-

form (.4=0, 5 = C=1) recently studied by Pollard [l], and the

"conjugate" of the Poisson transform (B =0, A = C= 1) whose kernel

is the Hilbert transform of the Poisson kernel.

The inversion of (1) and (2) is intended as a first step toward the

solution of the problem of inverting the convolution transform whose

kernel is a rational function with no poles on the real axis. I am in-

debted to Professor Pollard for proposing the problem considered in

this paper.

For the heuristic motivation of our inversion formulas we refer to

[l] and [2]. We distinguish two cases according as A is or is not zero.

In the former case a slight modification of Pollard's proof for the

Poisson case shows that (1) is inverted by
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lim   f Ge^'CH^B\c\-lfiu)du

(I) ~J'
1 1

= — [aix + 0) + a(x ^ 0) ]-[a(0+) + a(0-)]

for every x and (2) by

(II) lim Gel ICH^B | C |-y(«) = <b(x)
i->i

for almost all x, where

(3) G = C2(B2 + C2A2)~\ H = (1/i) D,

(4) <?l'cal/(x) = cos CtDf(x) + D-1 sin CtDf(x),

-   (-1)X(C/)2X
(5) cos Ctf>/(«) = £ -    ,„^,      /(*)<">,

(6) />-» sinCtDf(x) = £     .   ' '     ,,     /(*)(2iC),

u~2[f(x + u) +f(x - u) - 2fix)]du.
0

In the case A ^0 we shall show that according as/(x) is in the form

(1) or (2)

lim   j   Ge^tCH^h(u)du

(HI) 1

= — [aix + Q) + aix - 0) - (a(0+) + «(0-))] - /lG£x

for every x,

(IV) limGel(C*lft(x) = 4>(x) - AGK
t->i

for almost all x, where

ft(x) = - A f  f(u)du + B\Ch/tx),
/o

f2X -At + B
K = -2(^2Glog4)-:lim ■-<*«#(/)

x— /x       C2 + /2

afr(x) denoting the left-hand side of (III).

To obtain a complex inversion formula for (2) we proceed formally

as follows. Define
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(8) cosCtDg(x) = 2-1[e<ctDg(x) + e-w,Dg(x)]

= 2->[g(x + iCt) + g(x - iCl)},

sin CtDg(x) = (2i)~1[eiCtDg(x) - e-iCtDg(x)]

= (2i)~1k(x + iCt) -g(x-iCt)],

(10) h>(x) =  f   h(u)du,
J 0

then (IV) becomes formally

\imGe^tcn^h(x) = lim 2~1[h(x + iCt) + h(x - iCt)]
t->i t->i

(V) + lim 2->[AK* + M) + W* ~ ^t)]
<->i

= ^(x) - ,4a:.

These conclusions will be obtained rigorously in the final section

of this paper.

1. Properties of the transform. We summarize in Theorems 1.1 and

1.2 the properties of (1) and (2) needed in the sequel. Proofs are

omitted since they are similar to the proofs for the Poisson case to be

found in [l].

Theorem 1.1. If the transform

r  A(z- t) + B
(1.1) f(z) = 7T-1       -da(t), z = x + iy,

J J     (z-t)2 + C2 y

converges for a single value of z in the strip \ y\ < | C\ it converges uni-

formly in any compact subset of this strip and defines a function analytic

there. Thus we may differentiate an arbitrary number of times under the

integral sign.

Theorem 1.2. If (1.1) converges at a point z0in \y\ <\ C\ then

a(t) = o(t2),        A =0,
t\   —> oo.

a(t) = o(t), A 9*0,

2. The function f(x). We shall demonstrate here the existence of

f(x) ior all/(x) defined by (1.1).

Theorem 2.1. For all f(x) representable in the form (1.1)

/» CO

u~2\j(x + u) + f(x - u) - 2f(x)]du
o
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exists as an analytic function for all real x and

C   B(x - t)2 - 2AC2(x - t) - BC2
(2.1)       f(x)   =   -   Ti    I       —-=- da(t).

^ J C[(x- t)2+C2]2

The proof follows along lines similar to the argument for the Poisson

case but the details are sufficiently complicated to warrant carrying

out the demonstration.

By (1.1)

u~2[f(x + u) + f(x - u) -2/(x)]

= tt-1 f «-2[\(x + u- t) +\ix- u- t) - 2X(x - t)]dait)

where

X(x) = iAx+ B)/ix2 + C2),

the integral converging uniformly for fixed x in any interval — £ g ra

^£ as can be shown by the argument used to establish Theorem 1.1.

Integrating under the integral sign from 0 to £ and letting x —1= V

we obtain

n R

- ir'1 I    u-2[fix + u) - 2/(x) + fix - u)]du
Jo

r   BY2 - 2AC2V - BC2 T            /£ + V\
= — 7r-2 I    -   arctan (-■)

/        civ2 + c2)2     l       V  c   /

+ arctan (-jl dVaix - V)

rAV2 + 2BV-AC2       iV + R)2 + C2
- (27T2)"1 I- log-dVaix - V)

J iV2 + C2)2 iV-R)2 + C2

= /i + /2.

Defining

rv B?- 2AC2i- BC2
GiV) = tt-1 I     —-daiix - Q

J_    cie + c2y

(the existence of GiV) follows readily from an integration by parts

upon noting the order properties of a(t) obtained from Theorem 1.2.

Indeed, G(») is finite, a fact we shall need subsequently), we have

rV          (R + V)               (£ - V)i
h = — ir~l I    arctan-h arctan-   <ZG(F).
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Integrating by parts we obtain

7i = - 7T-1 fcG(V)[(C2 + (R + V)2)-1 - (C2 + (R- V)2)-*]dV

= ir-1 fc[G(V - R) - G(V + R)](C2 + V2)~ldV

and by dominated convergence we have, upon letting R tend to oo,

r   B(x - t)2 - 2AC2(x -t)- BC2
lim 7i = - G(oo) = - T-i        -'--i-■-da(l).
s— J C[(x - t)2 + C2]2

We now show that limE<00 72 = 0,

rAV2 + 2BV-AC2       (V + R)2 + C2
h = - (27T2)-1      -log-dVa(x - V)

J (V2 + C2)2 (V - R)2 + C2

r      v2 (v + R)2 + c2
= - A(2t*)~1-log-dVa(x - V)

J    (V2 + C2)2       (V-R)2 + C2

r AC2 - 2BV       (V + R)2 + C2
+ (27T2)-1 j   -log-dVa(x - V)

J    (V2 + C2)2        (V - R)2 + C2

= 72' +/2".

Consider I{. Let

H(V) = - A(2tt2)-> f7 -L-d^x - ©
•^ -co L   +§

then

r V (V + R)2 + C2
Ii =        -log-dH(V)

J    (V2 + C2)       (V - R)2 + C2

and upon integrating by parts it can be shown that II approaches

zero as R—>=o. For details we refer to [l, p. 545]. A similar treatment

establishes that 72" approaches zero as R—><x>. Our formula for/(z)

having been established it may be shown by the methods employed

in the proof of Theorem 1.1 that/(2) is an analytic function for

|y| < I C\. This completes the proof of Theorem 2.1.

3. Real inversion formulas. We give a series of lemmas which

culminate in a proof of the inversion formulas (III) and (IV).

Lemma 3.1. Withf(x) defined as in Theorem 2.1, Jl](u)du exists and
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f    f(u)du =  - ACir'1   f   -—-
Jo /     C2+(x-y)2

(3.1) y
/ix — y)daiy)—-y)    Ky)   +K

C2+(x- y)2

where

/daiy) ,     , C    ydaiy)
-— + B(t\C\ )-!       J_^_ .
C2 + y2             '    '       J    C2 + y2

The integral obviously exists since/(x) is analytic on the whole

real line. To see that it is of the form (3.1) we write (2.1) in the form

fix) = -yli'^Tr)"1  \  da(y) j eiu<z-")ue-^^du

(3.2)

+ £(2ttC)-1 J  oJa(y)  I e^^^u sgn ue~^^du.

Integrating both sides and noting that the uniform convergence

of (3.2) in x enables us to carry the integration under the inner in-

tegral we have our result. As an immediate consequence of the above

we have

Lemma 3.2.

B\C\-lf(x)-A fXf(u)du
J o

Jda(y)
■- -AK.
C2 + (x - y)2

A slight modification of the proof of the inversion formula for the

Poisson transform given in [l ] yields the proof of

Lemma 3.3. The transforms

-if da(y) r t \        -if        ^y)dy
fl(x)   =  T   1    \       -> fi(x)   =   X   1    I       -

J    C2 + (x-y)2 J    C2+(x-y)2

are inverted by

C lim   I    e\'CH\fi{u)du
<->i  Jo

= 2~l[a(x + 0) + a(x - 0)] - 2-1[a(0+) + a(0-)]

for all x and
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C lim e|fCH|/2(x) = <b(x) for almost all x, respectively.
<->i

Combining the results of the two previous lemmas, we have

Lemma 3.4. According as f(x) is in the form (1.1) or (1.2) we have

lim   f Ge^CH^h(u)du
(3.3) i-i Jo

= 2~1[a(x + 0) + a(x -r 0)] - 2-1[a(04-) + a(O-) - ,4G7Cx,

(3.4) limGel'CHlh(x) = <b(x) - AKG.
<->i

We now determine K in

Lemma 3.5.

r2" -At + B
K= - 2(AKi log 4)-1 lim -da*(t)

N^»JN        C2 + t2

where af(x) is the right-hand side of (3.2).

The convergence of the integral (1.1) for x=0 implies

r2N -At + B   .
lim   |      --d[a*(t) + AKGt] = 0;
N-* J N        C2 + t2

hence

Cw -At + B rw  -At + B
lim   |      -daf(t) = - lim AKG I       -dt
jv—Jjv      C2 + t2 n^~ JN       C2 + t2

A2 KG
= -^ log 4.

This completes the proof of

Theorem 3.1. (1) and (2) are inverted by (III) and (IV) respectively.

4. A complex inversion formula. We now indicate how the complex

inversion formula (V) obtained heuristically may be established

rigorously. We observe that we may write

*(*) = (G27T)-1 f <t>(y)dy Je<«<»-»>«Hc»idM - AK.

After some calculation the left-hand side of (V) may be put in the

form
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^i^f  (l-tr+i-y)2^^-^'
but the integral above is known to tend to #(x) for almost every x

[l, p. 550 ]. If A is zero, K is undefined but one may show that in

this case the left-hand side of (V) tends to <!>(x) itself. These remarks

establish

Theorem 4.1. For almost all x (2) is inverted by (V).

Bibliography

1. H. Pollard, The Poisson transform, Trans. Amer. Math. Soc. vol. 78 (1955) pp.

541-550.
2. -, Integral transforms, Duke Math. J. vol. 13 (1946) pp. 312 and 320.

Union College


