
A DEGENERATE PROBLEM OF BOLZA
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1. Introduction. The problem of Bolza [l, §69] with one total

differential equation in three variables is discussed. One variable is

required to be monotonic for a solution to exist; the extremals then

generate a family of surfaces. This allows a simple geometric inter-

pretation in the case of separated end conditions, and emphasis is

on that case. Conditions corresponding to the conditions of trans-

versality are developed.

2. Statement of the problem. The problem solved is that of finding

a curve C* with the following properties.

(a) A total differential equation

(1) Pdx + Qdy + Rdz = 0

is satisfied along C* except at corners; the functions P, Q, and R

are each analytic and R is bounded away from zero in the region of

interest A.

(h) The variable x is monotonic nondecreasing along C*; that is,

dx/ds^O along C*.

(c) The beginning of C*, the point (*i, yi, Zi), lies on the manifold

defined by a system of equations

(2) Gi(x, y, z) = 0;

there may be one, two, or three equations in this system.

(d) The end of C*, (x2, y2, z2), may be required to satisfy one or

two equations of the form

(3) 27,0, V, *) = 0;

there may be no equation of this form.

Curves satisfying these conditions will be called admissible curves.

(e) A function f(x, y, z) or f(x2, y2, z2) is required to have a mini-

mum at (x2, y2, z2), compared with its value at the end of other ad-

missible curves.

An asterisk (*) will be used to denote values and conditions asso-

ciated with C* and the minimum.

Two features distinguish this from the usual problem of Bolza

with separated end-conditions: the linearity of the differential equa-
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tion, and the inequality (b); also, the function to be minimized has

the form/(x2, y2, z2) instead of/(xs, y2, z2) —f(xu yh zi) [l, p. 191 ].

Under the conditions given, the differential equation can always

be reduced to the form

(4) dz = K(x, y, z)dx,

by quadrature and renaming the variables. In the remainder of the

paper, it will be assumed that equation (1) is in this canonical form.

Assume that K has the following properties.

(f) The equation

(5) Ky = 0,

where the subscript denotes the partial derivative, defines y as a

function

(6) y = y*(x, z)

for all values of x, z in A.

(g) The second partial derivative is positive,

(7) Kyy > 0

in A. These two conditions ensure that K(x, y, z) has a minimum

as a function of y for y = y*(x, z).

(h) Finally,

(8) Kz 2: 0

in A.

3. Derivation of conditions for a minimum. The conditions for a

minimum for/ may be derived in the usual way. Assume that a solu-

tion has been found in the form y = y*(x), z = z*(x); y*(x) is found to

be equal to y*(x, z) on C*". If y*(x) is determined, z* is given by equa-

tion (4), which may be rewritten as

(9) z* = zi + f  K(t, y*, z*)dt;

y*(x) generally has a discontinuity at xi and at x2, but z* is continu-

ous.

Before considering variations of/, let us investigate the variations

of z. This is done in two steps, finding the variations due to variations

of y(x) for x>xi, and then augmenting those with the variations due

to variations in the initial values (xi, yi, z{).

Consider a new function Y(x, a) =y*+av, where a is a parameter
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and v is an arbitrary piecewise-continuous function of x. This gen-

erates a new function

(10) Z(x, a) = sx + f K(t, Y, Z)dt,
J Xl

which may be expanded in powers of a

a2w2(x)
z* + aw +-h • • •

2

(ii) =Zl + f \K*+ a{K*v + K*w) + Y (K*vVi

+ 2K*vzvw + K*,w2 + K%2) + • • • 1 dt;

the asterisk (*) on K denotes that the arguments are those associated

with C*. By equating the coefficients of a on the two sides of this

equation, we get

w =  f  (K*v + K*w)dt,
J xx

K*vdt + I   K* \   Kyvdhdt
X\ **    X\ J   Xi

+ f Kf f K* f K*vdt2dhdt H-,
J xi J n J xi

or

(13) w(x) = l( f Kv*vdt\.

This defines the linear homogeneous operator I

/< X                                                 /» Z                  /»   t

K*F(l)dt +|    K* I    K*F(h)dtidt H-.

Let I2(F)=I(F)x^Xi and 7 = 7(1); these will be used later.

It is seen that if w(x) is to be zero for an arbitrary choice of v(x)

in equation (12), then condition (5), 7Ci, = 0, must hold on C*.

For if we choose v =K*, then the first integral is positive whenever

x is larger than the value where K* is first different from zero; the

other integrals are either positive or zero, due to condition (8). Hence

w becomes positive for all x sufficiently large. Likewise, if v= —Ky*,
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w becomes negative. Hence y=y*(x, z) is a necessary condition for

the variation of z to vanish.

Then there is the further variation of z due to the variation of the

endpoints. Assume that Xi(a), yi(a), Zi(a); x2(a), yt(a), Zi(a) are func-

tions with continuous second derivatives, satisfying conditions (2)

and (3). If we differentiate equation (10), we see that, for a = 0,

iz%      ix2
— = —-K(x2, y*[x2, z2], z2)
da       da

( Cx dzi      dxi r        ,      1
+h\       K*vdt + --— K(xi,y*[xi,zi],zi)\ .

Ui, da       da )

Finally, for/ to be a minimum,

0-*
da

dx2 dyi dti
= J x\ ~~,     r fill ~~     r fzi —— ',

da da da

this expands to

, dx2 dy2
0 = \U + f^K(x2, y*[x2, z2], z2)) —- + /„, —

da da
(14)

U*                dzi      dxi r        n      "j
K*vdt + --—K(xuy*[xi,zi],zi)\ .

Xl                 da       da )

Except for the singular case where/,, = 0, the solution to the problem

is given by the system

dzi — K(xi, y*[xizi], zi)tf*i = 0,

Gi(xu yi, Zi) =0;

iz = A"(x, y, z)dx,
(16) '

y = y*(x, z) (for xi < x < x2);

{/** + f'Mxt> y* [*2. ««]. 22)} dxi + fvtdy2 = 0,

■r?i(*2. yi, zt) = 0.

These are necessary conditions for an extreme value for /, exclud-

ing singular cases. The curve C* furnishing this minimum consists of

three segments. The first is the straight line parallel to the y axis,

running from the point (xi, yi, Zi) to (xi, y*[xi, Zi], zx). The second

runs from (xi, y* [xi, Zi], Zi) to (x2, y*[x2, z2], z2); the differential equa-



i95Jj A DEGENERATE PROBLEM OF BOLZA 851

tion (4) and condition (5) are satisfied along it. The third segment is

the straight line parallel to the y axis from this last point to (x2, y2, z2).

4. Geometrical interpretation. The geometric significance of these

equations may be seen with the aid of a lemma which follows.

If y is eliminated between equations (4) and (6), the resulting dif-

ferential equation

(18) dz — K(x, y*[x, z], z)dx = L(x, z)dx

is the equation of a family of cylinders {S} of the form <b{x, z)

= const, with generators parallel to the y axis. If extremals for the

given problem are defined as the curves on which equation (6) is

satisfied except where dx/ds = 0, this family of cylinders is generated

by the extremals of equation (4).

These cylinders have the following minimizing property. Let

(xi, yi, Zi) be any point of A and Si the corresponding cylinder defined

by<£(#, z) =<£(*i, zi).

Lemma. Any point (x2, y2, Zj) of Si, with x2>Xi, may be attained

by an admissible curve from (xi, yi, Zi) and the value z2 is smaller than

the value associated with x2 on any admissible curve which is not an

extremal.

Proof. The point (x2, y2, z2) is attained by an extremal C* as de-

scribed in the next to last paragraph of §3.

Let y=y*(x) and z = z*(x) denote the functional values on C*; let

C be any other curve, defined by Y(x) and Z(x); Y may be discon-

tinuous. Let xj be the point where Y(x) is first different from y*(x).

Then for x>x»

Z(x) - z(x) =  f   [K(x,"Y,Z) - K(x, y*, z*)]dx.
J X,

Now

K(x, Y, Z) ^ K(x, Y, z*)

(since Tf.^O) unless Z<z*, and

K(x, Y, z*) > K(x, y*, z*)

in some neighborhood of x3, with x>x3. It follows by contrapositive

argument that the integrand is positive or zero for all x>x3 and is

positive in some neighborhood of x3. Hence Z(x) >z*(x) for all x>x3.

Hence the Euler equation leads to a minimum value of z on an

admissible curve.
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The results of §3 may be interpreted now. The Euler equation

and the differential equation define directrices for the family of

cylinders {S}. ll there are three equations G<(xi, yu Zi)=0, these

define a point; if there is one or two of these, equations (14) are the

condition that the manifold be tangent to the corresponding cylinder

of the family {S} at (xi, yi, Zi). In either case, equations (15) and

(16) define a minimum value of z(x) for admissible curves, for x>Xi.

The surface Si furnishes a boundary to the region of points which

may be attained by an admissible curve from the manifold

G,-(xi, yu Zi)=0.

If there are two equations i/,(x2, y2, z2) =0, then the adjunction of

the equation

(19) <b(Xi, Zi) = <b(xh Zi)

determines the point (x2, y2, z2); f has an extreme value by virtue of

the fact that z has an extreme value. If there is but one equation

Hi = Q, or no equation of this form, then this together with (18) de-

fines a manifold; equations (17) define the condition that this mani-

fold is tangent to the surface/(x, y, z) = const, at (x2, y2, z2).

If we think of z as positive upward, for an extreme value for /

equations (2) must either define a point or be tangent to the family

{S} from above so that a lowest cylinder Si is determined. The cor-

responding member of the family / = const, must be tangent to the

manifold defined by Si and equations (3) if / is to have an extreme

value.

The problem is thus reduced to the solution of the differential

equation (18) and two minimization problems involving accessory

conditions, problems of a type commonly studied in advanced

calculus.

5. Remarks, singular cases, mixed end conditions. If V/=0 at

some point inside the region which may be attained by admissible

curves, then / may have a minimum at this point, and this point

may be attained by a set of admissible curves, not extremals, which

end at this point. Another singular case occurs if Xi=x2; there are

various others.

Conditions (15) and (17) correspond to the conditions of trans-

versality in the nondegenerate problem since they arise from the

variation of the end points. Equation (5) is the degenerate Euler

equation corresponding to the linear differential equation (4).

In the case of mixed end conditions, a function F(xi, yi, Z\; x2, y2, z2)

is to be minimized, subject to conditions (a) and (b) and a set of end

conditions
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(20) Gi(xh yu zi; x2, y2, z2) = 0;

there may be any number from none to five in the set of end condi-

tions. Equations (15) and (17) are replaced by (20) and

[F»x ~ F.M*u zi)h]dxi + FVldyi + [F„ + Ft,I2]dzi

+ [Fx, + FZiL(x2, z2)]dx2 + FVldy2 = 0.

One case which allows an elementary interpretation is the one

where F has the form

(22) F = f(x2, y2, z2) - g(xi, yu zi)

and there are no end conditions. If <b is an integral of equation (18)

with continuous derivatives, the condition (21) may be expressed as

(Vg)i ||  (V*),,

(V/)2 ||  (V<*>)2,

I vgU = I y/U
\v<b\i        \Vd>\2

where the subscripts 1 and 2 denote the points (xi, yi, Zi) and (x2, y2, z2)

respectively.

If the restriction that x be nondecreasing is removed, then in

general there is no minimum or maximum for /. A familiar example

is the case of a force field which is not derivable from a potential.

Suppose that the force vector has components P, Q which are func-

tions of x, y. The work W along a specified path is given by the dif-

ferential equation

dW = Pdx + Qdy.

If two points (*i, yi) and (x2, y2) are selected and we try to choose

a path to minimize the work done in going from one to the other, it

is well known that no such minimum exists (for example, see [2;

pp. 7, 8]); paths can be selected which give any desired finite value

for the work done. Except for the restriction that one variable be

monotonic this is a problem of the type investigated in this paper,

with z=W, R= — l, with three equations (2) (xi and yi are given,

and zi = 0), with two equations (3) (xs and y2 are specified, and with

/(x2, y2, z2)=z2).

If the differential equation (1) is not reduced to the canonical form

(4), the Euler equation (5) has the form

P(Ry - Q.) + Q(P. - Rx) + R(Qx - Pv) = o.
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If the expression on the left in this equation vanishes identically,

equation (1) is integrable and equation (5) is satisfied identically

after the reduction to canonical form. In this case the problem is con-

ceptually simpler, but the work of solution is similar. The surfaces

{S} of §4 are replaced by the integral surfaces of equation (1); then

the extreme values of / are determined by the contacts of these with

the surfaces defined by Gi = 0, Hi = 0, and / = const., almost exactly

as in §4. There is not generally a single curve connecting (xi, yi, Zi)

and (x2, y2, z2) but any curve serves which lies in the corresponding

integral surface of equation (1) and connects the two points. The re-

striction that x be monotonic has no particular significance for this

case. In the work problem used as an example above, this is the case

where the force function is derived from a potential and the work

done is the same along all paths connecting the two selected points.
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