
A NOTE ON ESTIMATING DISTRIBUTION FUNCTIONS1

J. R. BLUM

1. Statement of the problem. Let A be a positive number and for

each positive integer ra let/„(y) be a continuous function on the closed

interval [ — A, A]. Let F(y) be a distribution function on [—.4, A].

For each ra = 1, 2, • • • , define a„ by

(1-1) «n=    f    fniyWiy).
J -A

In this note we consider the problem of estimating the distribution

function Fiy) in terms of the sequence of numbers {a»}, and the se-

quence of functions/B(y). To this end we consider, for each positive

integer ra, a system of equations and inequalities. We construct a dis-

tribution function £n(y) in terms of any solution of this system, and

show that limnH.,0 £.(y) = £(y) for every continuity point of Fiy).

2. Conditions for uniqueness of F. It is clear that in order to be

able to estimate £, we must assume that £ is the unique distribution

function satisfying (1.1). More precisely we shall make the following

Assumption. Let Giy) be any function of bounded variation defined on

[—A, A] and satisfying

(2.1) an=  f  fniy)dGiy), ra = 1, 2, • • • .
J -A

Then Fiy)—Giy) is identically constant.

In this section we shall derive a condition which is equivalent to

the uniqueness assumption. To this end let B be the Banach space of

continuous functions defined on [—.4, A] and normed by

(2.2) ||/||=      max      |/(y) | .
vEl-AM

Then we have

Theorem 1. A necessary and sufficient condition that F be unique is

that the sequence f„iy) be fundamental in B.

Proof. Suppose that £ is unique. Let B' be the closed linear mani-

fold spanned by the sequence fn, and suppose that B' is a proper
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subspace of B. LetfoEB—B', and let <t> be a bounded linear functional

defined on B with <p(fo) —1, and <p(f) =0, ior fEB'. It is well known
that such functionals exist. From the representation theorem for

linear functionals on B it follows that there exists a function of

bounded variation on [ — .4, .4], say H(y), satisfying

(2.3) <p(f) =   f   f(y)dH(y), for every / E B.
J -A

Now let G(y) =F(y)+H(y). Clearly H(y) is not identically constant,

for fALAfo(y)dH(y) = 1. On the other hand we have

(2.4) an=  f   Uy)dG(y), n = 1, 2, • • • ,
J -A

since fALAfn(y)dH(y) =0 for every n. Since F is assumed to be unique,

it follows that the sequence/„ is fundamental, thus proving necessity.

Conversely suppose that the sequence F„ is fundamental in B, and

suppose that G(y) is a function of bounded variation on [ — A, A]

satisfying

(2-5) f   My)dF(y) =   f   fn(y)dG(y),      n = 1, 2, • • • .
J -A J -A

From the fact that strong convergence in B implies weak con-

vergence in B, and from the fact that the sequence/™ is fundamental

in B, it follows that equation (2.5) holds for every fEB. Hence for

every real number t we have

/A y* A

e^dF(y) =   I    eit>'dG(y),
-A J -A

and the uniqueness of F follows from well-known properties of

Fourier-Stieltjes transforms.

3. Construction of the sequence Fn. Let n be a given positive in-

teger. Let yo= —A, yi, y2, ■ ■ • , yn = A be a subdivision of [ — A, A]

into n equal subintervals. For l^i^n, l^j^n, define the numbers

Mf and m\f by

(3.1) Mi"   =     max    f{(y),        m/]   =     min     f{(y).

y-i        ' j-i '

Consider the following system of equations and inequalities in the

unknowns 77(n), • • ■ , 77nn):
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(i)   H? £ 0, ; = 1, • • • , ra.

(ii)   ££,n) = i.

i-l

(m)    2-1 Ma Hj    a a,-, t = 1, • • • , ra.
i=i

(iv)    2^ w«'i Bj    sn;, t = 1, ■ • • • , ra.
i=i

The system (3.2) clearly has the solution H?* = fffjdF, j = l, ■ • ■ ,n.
Now let H[n), ■ ■ ■ , Hnn) be an arbitrary solution 'of (3.2). We define

a distribution function £n(y) on [ — .4, .4] by

i3.3) F„iy) = £l7-n).

In the next section we shall prove

Theorem 2. For each point of continuity of Fiy) we have

lim Fniy) =Fiy).
n-*°o

4. Proof of Theorem 2.

Lemma 1. Let r be a fixed positive integer. Then lim,,..,;, J-Afriy)dFniy)

= ar.

Proof. We have/I A/r(y)o£„(y) = zZ"-iMy,)H?> for every positive
integer ra. Hence

£*&eT < fMy)dFniy) ̂ «'
3-1 J -A j-1

and it is sufficient to show that

ar  =   lUTl    2^ mrj Hj      ~   lun    2^ ^rj  £)    •
n—►«    j=i n—*»    j-^,1

Now for each ra^r, we have, in virtue of (3.2),

" Cn)      (n) A   ,,<>•)„(»)
2_, mTj  Hj      S   Or  S   2w -<™rj   £ j    •
;'=i i-l

Also

Sr,,(»)        (n)irrtn) ^- ri^-(n)        (n>i
[M„-   — mTj \Hj    s    max    [Mrj-   — mri J.

/-i /-i,....n
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Since fr(y) is uniformly continuous on [ — ̂ 4, A], the desired result

follows.

Lemma  2.   For each fEB,  we have

lim   f   f(y)dFn(y) =   f   f(y)dF(y).
n->»   J-a J-A

Proof. Let fEB, and let e be a positive number. The sequence/„ is

fundamental in B, and so we may choose a finite subset, say/,!, • • • ,

/,-,, and real numbers Ci, • ■ • , cr with the property that

/ - Z Cjfu    < e/3.
j-i

Without loss of generality we may assume that Zi-i |c/| >0. Now,

from Lemma 1, we may choose an integer N, so that for n^N we

have

max    I f   fii(y)dFn(y) -  f   fij(y)dF(y) I < J3 Z | Cj\
J= 1, ... , n | J -A J -A \ I 3=1

and consequently

| £ ( Z Cjfi,(y)\ dFn(y) - §* ( Z e</i,(y)) dF(y) < j ■

Then for w 5; TV, we have

I  f   f(y)dFn(y) -  f   f(y)dF(y) I
I J -A J -A I

^ | f   f(y)dFn(y) -   f   ( Z «<*,(?) W(y) I
I •/ -^ •/ -a \ j-i / I

+ | fA ( Z *<A,(y)) *F.(y) - / A ( Z «tfo(y)) <*F(y)

+ 1 f  (z^wW?) - fA/(^F(y)|.
I J -A \   )=1 / J -A I

The first and last terms are bounded by ||/— Zj-i cifn\\> and the

middle term by e/3. Hence

I  f   f(y)dFn(y) -   f   /(y)iF(y) 5< e.
\J -A J -A
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The proof of the theorem is now immediate. For each real number

t, let yj/nit) =JA.AeitvdFniy), and let $it) =fiAeitvdFiy). Then we have

limn-.oo i'nit) =lK0 for every t, and the theorem follows from the

continuity theorem for Fourier-Stieltjes transforms.

I wish to thank Professor E. W. Barankin of the University of

California for several helpful discussions concerning this problem.

Indiana University

REAL-VALUED MAPPINGS OF SPHERES

E. E. FLOYD

This note concerns subsets A of the unit 2-sphere 5 such that (*)

for each continuous real-valued mapping/ of 5 there exists a rotation

r of S with all points of r(A) having the same value under/. In 1942,

Kakutani [3 ] proved that the set A of end points of an orthonormal

set of 3 vectors has property (*). It was observed by de Mira Fer-

nandes [5 ] that the same proof holds in case A is the set of vertices

of any equilateral triangle. Yamabe and Yujobo [8] proved a gen-

eralization of Kakutani's theorem to ra-space. Their method may be

used to prove that the set A of vertices of an isosceles triangle has

property (*) (this has been carried out in a Master's thesis of R. D.

Johnson [2]). Here we prove that the set A of vertices of any triangle

has property (*); the methods differ from both those of Kakutani

and those of Yamabe and Yujobo.

Dyson [l ] has proved that the set of vertices of a square centered

at the origin has property (*); Livesay [4] has extended this to any

rectangle centered at the origin. The problem of finding all such sets

A having property (*) is unsolved.

Theorem. Let f be a continuous real-valued mapping of the sphere

S and let x0, Xi, x2 G S. There exists a rotation r with f(r(x0)) =/(r(xi))

=f(rix2)).

We need the following lemma.

Lemma. Suppose that X is a unicoherent locally connected continuum,

and that T is a map of period 2 on X without fixed points. Suppose A

is a subset of X which (i) is closed in X, (ii) is invariant under T, and
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