A NOTE ON ESTIMATING DISTRIBUTION FUNCTIONS!
J. R. BLUM

1. Statement of the problem. Let A be a positive number and for
each positive integer # let f.(y) be a continuous function on the closed
interval [—A4, A4)]. Let F(y) be a distribution function on [—4, 4].
For each n=1, 2, - - . | define a, by

(1.1) an = Afn(y)dF(y)-

In this note we consider the problem of estimating the distribution
function F(y) in terms of the sequence of numbers {a,.}, and the se-
quence of functions f.(y). To this end we consider, for each positive
integer 7, a system of equations and inequalities. We construct a dis-
tribution function F,(y) in terms of any solution of this system, and
show that lima..., Fa(y) = F(y) for every continuity point of F(y).

2. Conditions for uniqueness of F. It is clear that in order to be
able to estimate F, we must assume that F is the unique distribution
function satisfying (1.1). More precisely we shall make the following

AssUMPTION. Let G(y) be any function of bounded variation defined on
[—A4, A] and satisfying

A
(21) an = Afn(y)dG(y), n = 1, 21.' “ e

Then F(y) —G(y) is identically constant.

In this section we shall derive a condition which is equivalent to
the uniqueness assumption. To this end let B be the Banach space of
continuous functions defined on [—A4, 4] and normed by

@2 1A= max L.

Cl-4,4]
Then we have

THEQREM 1. A necessary and sufficient condition that F be unique is
that the sequence fu(y) be fundamental in B.

ProoF. Suppose that F is unique. Let B’ be the closed linear mani-
fold spanned by the sequence f., and suppose that B’ is a proper
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subspace of B. Let fo& B — B’, and let ¢ be a bounded linear functional
defined on B with ¢(fo) =1, and ¢(f) =0, for fEB’. It is well known
that such functionals exist. From the representation theorem for
linear functionals on B it follows that there exists a function of
bounded variation on [—A4, 4], say H(y), satisfying

A
(2.3) o) = [ fpamc) for every | € B.
—A

Now let G(y) = F(y)+H(y). Clearly H(y) is not identically constant,
for [%4fo(y)dH(y) =1. On the other hand we have

A

(2.4) ay = fa(9)dG(y), n=12---,
—A

since [* 4f.(y)dH(y) =0 for every n. Since F is assumed to be unique,
it follows that the sequence f, is fundamental, thus proving necessity.
Conversely suppose that the sequence F, is fundamental in B, and
suppose that G(y) is a function of bounded variation on [—4, 4]
satisfying
A

A
(2.5) Afn(y)dF(y) = fx(0NdG(y), n=1,2,---

From the fact that strong convergence in B implies weak con-
vergence in B, and from the fact that the sequence f, is fundamental
in B, it follows that equation (2.5) holds for every f&B. Hence for
every real number ¢ we have

fAe“”dF(y) = fAe“”dG(y),

—A —A

and the uniqueness of F follows from well-known properties of
Fourier-Stieltjes transforms.

3. Construction of the sequence F,. Let n be a given positive in-
teger. Let yo=—4, y1, y2, - - *, ya=4 be a subdivision of [—4, 4]
into # equal subintervals. For 1 <4<#, 1<j=<n, define the numbers
M and m{ by

(n) (n) .
3.1 M:;" = max fi(y), mi; = min fiy).

v, SysSv; v, SvsSvy;
-1 ’ -1 !

Consider the following system of equations and inequalities in the
unknowns H®, . . . H®:



1955] A NOTE ON ESTIMATING DISTRIBUTION FUNCTIONS 955

© B 20 i=1, . n
(ii) ZH‘"’
=1
3.2 2 (n
-2 (i) Z‘,Mf,)H” i=1,- . n
(iv) me?)ﬂj-n)éa,-, i=1,--,n

=1

The system (3. 2) clearly has the solution Hj o) — s dF, j=1,-+- n

Now let H™, - - . | H™ be an arbitrary solutlon of (3.2). We define
a distribution functlon F.(y) on [—4, A] by
(n)
(3.3) Faly) = 2 Hy .
visy

In the next section we shall prove
THEOREM 2. For each point of continuity of F(y) we have
lim Fu(y) = F(y).

n—wo

4. Proof of Theorem 2.

LEMMA 1. Let r be a fixed positive integer. Then lim, ., [4 4f.(y)dFa(y)
=a,.

PrOOF. We have [4 ,f.(y)d Fu(y) = D %1 f(y;) H{ for every positive
integer n. Hence

o~ (n)__(n) () _(n)
Suu” s [ i) s S uap,
=1 J=1
and it is sufficient to show that
. hid (n) (n n
= lim Y, m, ’ = lim EM,(,)H(”)
IOl I n—wo G
Now for each n=r, we have, in virtue of (3.2),
O (n)
SomiH 50 s 3 Al

=1 j=1

Also

S0 - w1 s max B - m)
j=1 J=1,....n
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Since f,(y) is uniformly continuous on [—A4, 4], the desired result
follows.

LEMMA 2. For each fEB, we have

A

A
im [ a1, = f SO)IG)

n—o

Proor. Let fE€ B, and let € be a positive number. The sequence f, is
fundamental in B, and so we may choose a finite subset, say fi, - - -,
fi,, and real numbers ¢y, - - -, ¢, with the property that

‘f‘ icifii

7=1

< ¢/3.

Without loss of generality we may assume that Y i, |c,~| >0. Now,
from Lemma 1, we may choose an integer N, so that for n=N we
have

_ife;(y)an(y) - f_: fi,-(y)dF(y), <e / 3 Z | e;

1=1,...,n ju=1

and consequently

U:( ,.;Zlcj "f(y)) dFa(y) — f_:( ;Zlcffij(y)) dF(y) < _2_ .

Then for n= N, we have

A A
[ soarir = [ srare

él _zf(y)dF,.(y) - A(iwﬂ,(ﬁ)dﬂ(y)[

—A =1

+| f_( ;Zlcffi,»(y)> a0~ [ ( icif,-,(y)) dF(y)]

—A \ j=1

4 l f~( > cjft-,(y)) dF (y) — f_:f(y)dF(y) ]

i=1

The first and last terms are bounded by ||f— >_i-; ¢, and the
middle term by /3. Hence

[ stmaruis) - [ s e
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The proof of the theorem is now immediate. For each real number
t, let Y. (t) = [4 4ei%d Fa(y), and let ¢(t) = [2 s¢i%d F(y). Then we have
liMa.e Ya(t) =¢(¢) for every ¢, and the theorem follows from the
continuity theorem for Fourier-Stieltjes transforms.

I wish to thank Professor E. W. Barankin of the University of
California for several helpful discussions concerning this problem.

INDIANA UNIVERSITY

REAL-VALUED MAPPINGS OF SPHERES
E. E. FLOYD

This note concerns subsets A of the unit 2-sphere S such that (*)
for each continuous real-valued mapping f of S there exists a rotation
r of S with all points of 7(A) having the same value under f. In 1942,
Kakutani [3] proved that the set A of end points of an orthonormal
set of 3 vectors has property (*). It was observed by de Mira Fer-
nandes [5] that the same proof holds in case A is the set of vertices
of any equilateral triangle. Yamabe and Yujobo [8] proved a gen-
eralization of Kakutani’s theorem to n-space. Their method may be
used to prove that the set A of vertices of an isosceles triangle has
property (*) (this has been carried out in a Master’s thesis of R. D.
Johnson [2]). Here we prove that the set A of vertices of any triangle
has property (*); the methods differ from both those of Kakutani
and those of Yamabe and Yujobo.

Dyson [1] has proved that the set of vertices of a square centered
at the origin has property (*); Livesay [4] has extended this to any
rectangle centered at the origin. The problem of finding all such sets
A having property (*) is unsolved.

THEOREM. Let f be a continuous real-valued mapping of the sphere
S and let xo, %1, x2 € S. There exists a rotation r with f(r(xo)) =f(r(x1))

=f(r(x)).
We need the following lemma.

LEMMA. Suppose that X is a unicoherent locally connected continuum,
and that T is a map of period 2 on X without fixed points. Suppose A
is a subset of X which (i) is closed in X, (ii) is invariant under T, and
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