A NOTE ON ESTIMATING DISTRIBUTION FUNCTIONS 1

J. R. BLUM

1. Statement of the problem. Let A be a positive number and for each positive integer n let $f_n(y)$ be a continuous function on the closed interval [-A, A]. Let F(y) be a distribution function on [-A, A]. For each $n = 1, 2, \dots$, define a_n by

$$a_n = \int_{-A}^{A} f_n(y) dF(y).$$

In this note we consider the problem of estimating the distribution function F(y) in terms of the sequence of numbers $\{a_n\}$, and the sequence of functions $f_n(y)$. To this end we consider, for each positive integer n, a system of equations and inequalities. We construct a distribution function $F_n(y)$ in terms of any solution of this system, and show that $\lim_{n\to\infty} F_n(y) = F(y)$ for every continuity point of F(y).

2. Conditions for uniqueness of F. It is clear that in order to be able to estimate F, we must assume that F is the unique distribution function satisfying (1.1). More precisely we shall make the following ASSUMPTION. Let G(y) be any function of bounded variation defined on [-A, A] and satisfying

(2.1)
$$a_n = \int_{-A}^{A} f_n(y) dG(y), \qquad n = 1, 2, \cdots.$$

Then F(y) - G(y) is identically constant.

In this section we shall derive a condition which is equivalent to the uniqueness assumption. To this end let B be the Banach space of continuous functions defined on [-A, A] and normed by

(2.2)
$$||f|| = \max_{y \in [-A,A]} |f(y)|.$$

Then we have

Theorem 1. A necessary and sufficient condition that F be unique is that the sequence $f_n(y)$ be fundamental in B.

PROOF. Suppose that F is unique. Let B' be the closed linear manifold spanned by the sequence f_n , and suppose that B' is a proper

Received by the editors February 28, 1955.

¹ Sponsored by the Office of Ordnance Research, U. S. Army, under Contract No. DA-33-008-ORD-965.

subspace of B. Let $f_0 \in B - B'$, and let ϕ be a bounded linear functional defined on B with $\phi(f_0) = 1$, and $\phi(f) = 0$, for $f \in B'$. It is well known that such functionals exist. From the representation theorem for linear functionals on B it follows that there exists a function of bounded variation on [-A, A], say H(y), satisfying

(2.3)
$$\phi(f) = \int_{-1}^{A} f(y)dH(y), \quad \text{for every } f \in B.$$

Now let G(y) = F(y) + H(y). Clearly H(y) is not identically constant, for $\int_{-A}^{A} f_0(y) dH(y) = 1$. On the other hand we have

(2.4)
$$a_n = \int_{-A}^{A} f_n(y) dG(y), \qquad n = 1, 2, \cdots,$$

since $\int_{-A}^{A} f_n(y) dH(y) = 0$ for every n. Since F is assumed to be unique, it follows that the sequence f_n is fundamental, thus proving necessity.

Conversely suppose that the sequence F_n is fundamental in B, and suppose that G(y) is a function of bounded variation on [-A, A] satisfying

(2.5)
$$\int_{-A}^{A} f_n(y) dF(y) = \int_{-A}^{A} f_n(y) dG(y), \quad n = 1, 2, \cdots.$$

From the fact that strong convergence in B implies weak convergence in B, and from the fact that the sequence f_n is fundamental in B, it follows that equation (2.5) holds for every $f \in B$. Hence for every real number t we have

$$\int_{-A}^{A} e^{ity} dF(y) = \int_{-A}^{A} e^{ity} dG(y),$$

and the uniqueness of F follows from well-known properties of Fourier-Stieltjes transforms.

3. Construction of the sequence F_n . Let n be a given positive integer. Let $y_0 = -A$, y_1 , y_2 , \cdots , $y_n = A$ be a subdivision of [-A, A] into n equal subintervals. For $1 \le i \le n$, $1 \le j \le n$, define the numbers $M_{ij}^{(n)}$ and $M_{ij}^{(n)}$ by

(3.1)
$$M_{ij}^{(n)} = \max_{\nu_{i-1} \le \nu \le \nu_j} f_i(y), \qquad m_{ij}^{(n)} = \min_{\nu_{i-1} \le \nu \le \nu_j} f_i(y).$$

Consider the following system of equations and inequalities in the unknowns $H_1^{(n)}, \dots, H_n^{(n)}$:

(i)
$$H_j^{(n)} \geq 0$$
, $j = 1, \dots, n$.

(ii)
$$\sum_{j=1}^{n} H_{j}^{(n)} = 1.$$

(3.2)
$$(iii) \quad \sum_{j=1}^{n} M_{ij}^{(n)} H_{j}^{(n)} \geq a_{i}, \qquad i = 1, \dots, n.$$

(iv)
$$\sum_{j=1}^{n} m_{ij}^{(n)} H_{i}^{(n)} \leq a_{i}, \qquad i = 1, \dots, n.$$

The system (3.2) clearly has the solution $H_j^{(n)} = \int_{y_{j-1}}^{y_j} dF$, $j = 1, \dots, n$. Now let $H_1^{(n)}, \dots, H_n^{(n)}$ be an arbitrary solution of (3.2). We define a distribution function $F_n(y)$ on [-A, A] by

(3.3)
$$F_n(y) = \sum_{u \leq y} H_i^{(n)}.$$

In the next section we shall prove

THEOREM 2. For each point of continuity of F(y) we have

$$\lim_{n\to\infty}F_n(y)=F(y).$$

4. Proof of Theorem 2.

LEMMA 1. Let r be a fixed positive integer. Then $\lim_{n\to\infty} \int_{-A}^{A} f_r(y) dF_n(y) = a_r$.

Proof. We have $\int_{-A}^{A} f_r(y) dF_n(y) = \sum_{j=1}^{n} f_r(y_j) H_j^{(n)}$ for every positive integer n. Hence

$$\sum_{j=1}^{n} m_{rj}^{(n)} H_{j}^{(n)} \leq \int_{-A}^{A} f_{r}(y) dF_{n}(y) \leq \sum_{j=1}^{n} M_{rj}^{(n)} H_{j}^{(n)},$$

and it is sufficient to show that

$$a_r = \lim_{n \to \infty} \sum_{i=1}^n m_{ri}^{(n)} H_i^{(n)} = \lim_{n \to \infty} \sum_{i=1}^n M_{ri}^{(n)} H_i^{(n)}.$$

Now for each $n \ge r$, we have, in virtue of (3.2),

$$\sum_{i=1}^{n} m_{rj}^{(n)} H_{i}^{(n)} \leq a_{r} \leq \sum_{i=1}^{n} M_{ri}^{(n)} H_{i}^{(n)}.$$

Also

$$\sum_{i=1}^{n} \left[M_{ri}^{(n)} - m_{ri}^{(n)} \right] H_{i}^{(n)} \leq \max_{j=1,\ldots,n} \left[M_{ri}^{(n)} - m_{ri}^{(n)} \right].$$

Since $f_r(y)$ is uniformly continuous on [-A, A], the desired result follows.

LEMMA 2. For each $f \in B$, we have

$$\lim_{n\to\infty}\int_{-A}^{A}f(y)dF_n(y)=\int_{-A}^{A}f(y)dF(y).$$

PROOF. Let $f \in B$, and let ϵ be a positive number. The sequence f_n is fundamental in B, and so we may choose a finite subset, say f_{i_1}, \dots, f_{i_r} , and real numbers c_1, \dots, c_r with the property that

$$\left\| f - \sum_{i=1}^r c_i f_{ij} \right\| < \epsilon/3.$$

Without loss of generality we may assume that $\sum_{i=1}^{r} |c_i| > 0$. Now, from Lemma 1, we may choose an integer N, so that for $n \ge N$ we have

$$\max_{j=1,\ldots,n} \left| \int_{-A}^{A} f_{ij}(y) dF_{n}(y) - \int_{-A}^{A} f_{ij}(y) dF(y) \right| < \epsilon / 3 \sum_{j=1}^{r} |c_{j}|$$

and consequently

$$\left| \int_{-A}^{A} \left(\sum_{j=1}^{r} c_{j} f_{ij}(y) \right) dF_{n}(y) \right| - \int_{-A}^{A} \left(\sum_{j=1}^{r} c_{j} f_{ij}(y) \right) dF(y) < \frac{\epsilon}{3} \cdot \frac{\epsilon}{3} \cdot \frac{1}{2} \left(\sum_{j=1}^{r} c_{j} f_{ij}(y) \right) dF(y) < \frac{\epsilon}{3} \cdot \frac{1}{2} \left(\sum_{j=1}^{r} c_{j} f_{ij}(y) \right) dF(y) \right| dF(y) < \frac{\epsilon}{3} \cdot \frac{1}{2} \left(\sum_{j=1}^{r} c_{j} f_{ij}(y) \right) dF(y) < \frac{\epsilon}{3} \cdot \frac{1}{2} \left(\sum_{j=1}^{r} c_{j} f_{ij}(y) \right) dF(y) < \frac{\epsilon}{3} \cdot \frac{1}{2} \left(\sum_{j=1}^{r} c_{j} f_{ij}(y) \right) dF(y) = \frac{\epsilon}{3} \cdot \frac{1}{2} \left(\sum_{j=1}^{r} c_{j} f_{ij}(y) \right) dF(y) = \frac{\epsilon}{3} \cdot \frac{1}{2} \left(\sum_{j=1}^{r} c_{j} f_{ij}(y) \right) dF(y) = \frac{\epsilon}{3} \cdot \frac{1}{2} \left(\sum_{j=1}^{r} c_{j} f_{ij}(y) \right) dF(y) = \frac{\epsilon}{3} \cdot \frac{1}{2} \left(\sum_{j=1}^{r} c_{j} f_{ij}(y) \right) dF(y) = \frac{\epsilon}{3} \cdot \frac{1}{2} \left(\sum_{j=1}^{r} c_{j} f_{ij}(y) \right) dF(y) = \frac{\epsilon}{3} \cdot \frac{1}{2} \left(\sum_{j=1}^{r} c_{j} f_{ij}(y) \right) dF(y) = \frac{\epsilon}{3} \cdot \frac{1}{2} \left(\sum_{j=1}^{r} c_{j} f_{ij}(y) \right) dF(y) = \frac{\epsilon}{3} \cdot \frac{1}{2} \left(\sum_{j=1}^{r} c_{j} f_{ij}(y) \right) dF(y) = \frac{\epsilon}{3} \cdot \frac{1}{2} \left(\sum_{j=1}^{r} c_{j} f_{ij}(y) \right) dF(y) = \frac{\epsilon}{3} \cdot \frac{1}{2} \left(\sum_{j=1}^{r} c_{j} f_{ij}(y) \right) dF(y) = \frac{\epsilon}{3} \cdot \frac{1}{2} \left(\sum_{j=1}^{r} c_{j} f_{ij}(y) \right) dF(y) = \frac{\epsilon}{3} \cdot \frac{1}{2} \left(\sum_{j=1}^{r} c_{j} f_{ij}(y) \right) dF(y) = \frac{\epsilon}{3} \cdot \frac{1}{2} \left(\sum_{j=1}^{r} c_{j} f_{ij}(y) \right) dF(y) = \frac{\epsilon}{3} \cdot \frac{1}{2} \left(\sum_{j=1}^{r} c_{j} f_{ij}(y) \right) dF(y) = \frac{\epsilon}{3} \cdot \frac{1}{2} \left(\sum_{j=1}^{r} c_{j} f_{ij}(y) \right) dF(y) = \frac{\epsilon}{3} \cdot \frac{1}{2} \left(\sum_{j=1}^{r} c_{j} f_{ij}(y) \right) dF(y) = \frac{\epsilon}{3} \cdot \frac{1}{2} \left(\sum_{j=1}^{r} c_{j} f_{ij}(y) \right) dF(y) = \frac{\epsilon}{3} \cdot \frac{1}{2} \left(\sum_{j=1}^{r} c_{j} f_{ij}(y) \right) dF(y) = \frac{\epsilon}{3} \cdot \frac{1}{2} \left(\sum_{j=1}^{r} c_{j} f_{ij}(y) \right) dF(y) = \frac{\epsilon}{3} \cdot \frac{1}{2} \left(\sum_{j=1}^{r} c_{j} f_{ij}(y) \right) dF(y) = \frac{\epsilon}{3} \cdot \frac{1}{2} \left(\sum_{j=1}^{r} c_{j} f_{ij}(y) \right) dF(y) = \frac{\epsilon}{3} \cdot \frac{1}{2} \left(\sum_{j=1}^{r} c_{j} f_{ij}(y) \right) dF(y) = \frac{\epsilon}{3} \cdot \frac{1}{2} \left(\sum_{j=1}^{r} c_{j} f_{ij}(y) \right) dF(y) = \frac{\epsilon}{3} \cdot \frac{1}{2} \left(\sum_{j=1}^{r} c_{j} f_{ij}(y) \right) dF(y) dF($$

Then for $n \ge N$, we have

$$\left| \int_{-A}^{A} f(y) dF_{n}(y) - \int_{-A}^{A} f(y) dF(y) \right|$$

$$\leq \left| \int_{-A}^{A} f(y) dF_{n}(y) - \int_{-A}^{A} \left(\sum_{j=1}^{r} c_{j} f_{ij}(y) \right) dF_{n}(y) \right|$$

$$+ \left| \int_{-A}^{A} \left(\sum_{j=1}^{r} c_{j} f_{ij}(y) \right) dF_{n}(y) - \int_{-A}^{A} \left(\sum_{j=1}^{r} c_{j} f_{ij}(y) \right) dF(y) \right|$$

$$+ \left| \int_{-A}^{A} \left(\sum_{j=1}^{r} c_{j} f_{ij}(y) \right) dF(y) - \int_{-A}^{A} f(y) dF(y) \right|.$$

The first and last terms are bounded by $||f - \sum_{j=1}^{r} c_{i}f_{ij}||$, and the middle term by $\epsilon/3$. Hence

$$\left| \int_{-A}^{A} f(y) dF_n(y) - \int_{-A}^{A} f(y) dF(y) \right|^{2} < \epsilon.$$

The proof of the theorem is now immediate. For each real number t, let $\psi_n(t) = \int_{-A}^A e^{ity} dF_n(y)$, and let $\psi(t) = \int_{-A}^A e^{ity} dF(y)$. Then we have $\lim_{n\to\infty} \psi_n(t) = \psi(t)$ for every t, and the theorem follows from the continuity theorem for Fourier-Stieltjes transforms.

I wish to thank Professor E. W. Barankin of the University of California for several helpful discussions concerning this problem.

Indiana University

REAL-VALUED MAPPINGS OF SPHERES

E. E. FLOYD

This note concerns subsets Δ of the unit 2-sphere S such that (*) for each continuous real-valued mapping f of S there exists a rotation r of S with all points of $r(\Delta)$ having the same value under f. In 1942, Kakutani [3] proved that the set Δ of end points of an orthonormal set of 3 vectors has property (*). It was observed by de Mira Fernandes [5] that the same proof holds in case Δ is the set of vertices of any equilateral triangle. Yamabe and Yujobo [8] proved a generalization of Kakutani's theorem to n-space. Their method may be used to prove that the set Δ of vertices of an isosceles triangle has property (*) (this has been carried out in a Master's thesis of R. D. Johnson [2]). Here we prove that the set Δ of vertices of any triangle has property (*); the methods differ from both those of Kakutani and those of Yamabe and Yujobo.

Dyson [1] has proved that the set of vertices of a square centered at the origin has property (*); Livesay [4] has extended this to any rectangle centered at the origin. The problem of finding all such sets Δ having property (*) is unsolved.

THEOREM. Let f be a continuous real-valued mapping of the sphere S and let $x_0, x_1, x_2 \in S$. There exists a rotation r with $f(r(x_0)) = f(r(x_1)) = f(r(x_2))$.

We need the following lemma.

LEMMA. Suppose that X is a unicoherent locally connected continuum, and that T is a map of period 2 on X without fixed points. Suppose A is a subset of X which (i) is closed in X, (ii) is invariant under T, and

Received by the editors September 23, 1954.