The proof of the theorem is now immediate. For each real number t, let $\psi_n(t) = \int_{-A}^A e^{ity} dF_n(y)$, and let $\psi(t) = \int_{-A}^A e^{ity} dF(y)$. Then we have $\lim_{n\to\infty} \psi_n(t) = \psi(t)$ for every t, and the theorem follows from the continuity theorem for Fourier-Stieltjes transforms.

I wish to thank Professor E. W. Barankin of the University of California for several helpful discussions concerning this problem.

Indiana University

REAL-VALUED MAPPINGS OF SPHERES

E. E. FLOYD

This note concerns subsets Δ of the unit 2-sphere S such that (*) for each continuous real-valued mapping f of S there exists a rotation r of S with all points of $r(\Delta)$ having the same value under f. In 1942, Kakutani [3] proved that the set Δ of end points of an orthonormal set of 3 vectors has property (*). It was observed by de Mira Fernandes [5] that the same proof holds in case Δ is the set of vertices of any equilateral triangle. Yamabe and Yujobo [8] proved a generalization of Kakutani's theorem to n-space. Their method may be used to prove that the set Δ of vertices of an isosceles triangle has property (*) (this has been carried out in a Master's thesis of R. D. Johnson [2]). Here we prove that the set Δ of vertices of any triangle has property (*); the methods differ from both those of Kakutani and those of Yamabe and Yujobo.

Dyson [1] has proved that the set of vertices of a square centered at the origin has property (*); Livesay [4] has extended this to any rectangle centered at the origin. The problem of finding all such sets Δ having property (*) is unsolved.

THEOREM. Let f be a continuous real-valued mapping of the sphere S and let $x_0, x_1, x_2 \in S$. There exists a rotation r with $f(r(x_0)) = f(r(x_1)) = f(r(x_2))$.

We need the following lemma.

LEMMA. Suppose that X is a unicoherent locally connected continuum, and that T is a map of period 2 on X without fixed points. Suppose A is a subset of X which (i) is closed in X, (ii) is invariant under T, and

Received by the editors September 23, 1954.

(iii) separates x from T(x) for all x from the complementary set. There exists a connected subset B of A having properties (i), (ii), and (iii).

PROOF. There exists a set $B \subset A$ minimal with respect to possessing properties (i), (ii), and (iii). Since X is locally connected, there is a separation $X-B=P\cup Q$ with T(P)=Q. Consider any such separation. P is maximal with respect to the class of open sets R with $R\cap T(R)=\varnothing$. It follows from the maximality of P that (1) the interior of B is empty, and (2) $x\in \overline{P}\cap B$ if and only if $x\in \overline{Q}\cap B$. Hence $\overline{P}\cap \overline{Q}=B$.

A consequence of the minimality of B is that if $X = R \cup S$ where R is closed, T(R) = S, and $R \cap S \subset B$ then $R \cap S = B$. We show that if $X - B = P \cup Q$ is a separation with P = T(Q) then \overline{P} is connected. Suppose $\overline{P} = U \cup V$ is a separation. Then $\overline{Q} = T(U) \cup T(V)$; let $R = U \cup T(V)$ and $S = V \cup T(U)$. Then R is closed, T(R) = S, and $T = R \cup S$. Moreover $T \cap S = [U \cap T(U)] \cup [V \cap T(V)] = B$. But $T \cap T(U) \subset T(V) \cap B$ and $T \cap T(V) \subset T(V) \cap B$. Since $T \cap T(V) \cap B$ is a separation, $T \cap T(U) \cap T$

Now $X = \overline{P} \cup \overline{Q}$ where \overline{P} and \overline{Q} are continua. By the definition of unicoherence, $\overline{P} \cap \overline{Q}$ is connected. The lemma follows.

We now prove the theorem. Let X denote the group of rotations of S. Then X is homeomorphic with projective 3-space [6, p. 115]. Hence X is a unicoherent locally connected continuum. Let s_i be a rotation of order 2 interchanging x_0 and x_i , i=1, 2. Define $T_i: X \to X$ by $T_i(r) = r$ o s_i , where r o s_i is the composition s_i followed by r. Define real-valued mappings f_i of X, i=1, 2, by $f_i(r) = f(r(x_i)) - f(r(x_0))$. A short computation shows that $f_i \circ T_i = -f_i$. Define A_i to be the set of all $r \in X$ with $f_i(r) = 0$. Then A_i is closed and invariant under T_i . Since $f_i \circ T_i = -f_i$, if $f \in X - A_i$ then $f_i(r)$ and $f_i(T_i(r))$ have opposite signs, and hence A_i separates r from $T_i(r)$. By the lemma, there is a continuum B_i in X, invariant under T_i , and with B_i separating r from $T_i(r)$ for $r \in X - B_i$. Since X is locally connected, then $X - B_i = P_i \cup O_i$ where P_i is open, $P_i \cap Q_i = \emptyset$, and $Q_i = T_i(P_i)$.

The transformations T_i are "translations" in the compact group X. They then preserve Haar measure on X, as does $T_1 \circ T_2$. So if U is a nonempty open set in X with $U \neq X$ then $T_1(T_2(\overline{U})) \subset U$. For if $(T_1 \circ T_2) \overline{U} \subset U$, then the measure of $(T_1 \circ T_2) U$ is less than that of U, which contradicts the measure preserving property.

Suppose that $B_1 \cap B_2 = \emptyset$. Since B_2 is connected and disjoint from B_1 , either $B_2 \subset P_1$ or $B_2 \subset Q_1$. Suppose the naming is so carried out that $B_2 \subset Q_1$; similarly suppose $B_1 \subset P_2$. Now, since B_1 is a continuum, $P_1 \cup B_1$ is connected. Since $P_1 \cup B_1$ intersects P_2 and does not intersect B_2 , then $P_1 \cup B_1 \subset P_2$. Similarly $Q_2 \cup B_2 \subset Q_1$. Now

$$T_1(T_2(\overline{P}_1)) \subset T_1(T_2(P_1 \cup B_1)) \subset T_1(T_2(P_2)) \subset T_1(Q_2) \subset T_1(Q_1) = P_1.$$

We have seen that this is impossible. Hence $B_1 \cap B_2 \neq \emptyset$; suppose $r \in B_1 \cap B_2$. Then $f_1(r) = f_2(r) = 0$ and $f(r(x_0)) = f(r(x_1)) = f(r(x_2))$.

BIBLIOGRAPHY

- 1. F. J. Dyson, Continuous functions defined on spheres, Ann. of Math. vol. 54 (1951) pp. 534-536.
- 2. R. D. Johnson, Continuous real-valued functions on spheres, Master's thesis, University of Virginia.
- 3. S. Kakutani, A proof that there exists a circumscribing cube around any bounded closed convex set in R³, Ann. of Math. vol. 43 (1942) pp. 739-741.
- 4. G. R. Livesay, On a theorem of F. J. Dyson, Ann. of Math. vol. 59 (1954) pp. 227-229.
- 5. A. de Mira Fernandes, Funzioni continue sopra una superficie sferica, Portugaliae Mathematica vol. 5 (1946) pp. 132-134.
 - 6. N. Steenrod, The topology of fibre bundles, Princeton, 1951.
 - 7. G. T. Whyburn, Analytic topology, New York, 1941.
- 8. H. Yamabe and Z. Yujobo, On the continuous function defined on a sphere, Osaka Math. J. vol. 2 (1950) pp. 19-22.

University of Virginia