A NOTE ON SOME PROPERTIES OF FINITE RINGS

GEORGE F. LEGER, JR.1

Our first result is the determination of those finite rings R which have the following property

*(k): The only ideals of R are R, R^2 , \cdots , $R^k = (0)$.

Throughout this note the term "ideal" shall be used in place of the term "two-sided ideal."

THEOREM I. Let R have property *(k) and let I[z] denote the ring of polynomials in the indeterminate z with integral coefficients. Then there exists a prime p and a polynomial $f(z) = pz - \sum_{i=2}^{k-1} a_i z^i$ with $0 \le a_i < p$ such that $R \cong zI[z]/(f(z), z^k)$. Conversely, if f(z) has this form, then $zI[z]/(f(z), z^k)$ has property *(k).

PROOF. Let R have *(k). We assert that R has a prime power number of elements. If not, say o(R) = ab with (a, b) = 1, then $A = \{r \mid ar = 0\}$ and $B = \{r \mid br = 0\}$ are two ideals of R such that $A \supseteq B$ and $B \subseteq A$ which contradicts *(k). Thus $o(R) = p^{\alpha}$ for some prime p.

We assume k>1 and choose $x\in R$, $x\notin R^2$. Then the subring (R^2, x) of R generated by R^2 and x is an ideal properly containing R^2 whence $(R^2, x)=R$. This gives $R^2=(R^2, x)^2=(R^{2+1}, x^2)$. Taking s=k-1, k-2, \cdots , we find that R is the image of zI[z] (I the ring of rational integers, z an indeterminate) by the homomorphism ϕ which sends z into x.

Now we claim that $px \in R^2$. Indeed, otherwise we should have $(R^2, px) = R$ whence there exists an integer s such that $x - spx \in R^2$ which gives $x^{k-1} = spx^{k-1} = \cdots = s^{\alpha}p^{\alpha}x^{k-1} = 0$ whence $R^{k-1} = (0)$, a contradiction. Thus $px = a_2x^2 + a_3x^3 + \cdots + a_{k-1}x^{k-1}$ with the a_i rational integers, so that if we put $f(z) = pz - a_2z^2 - a_3z^3 - \cdots - a_{k-1}z^{k-1}$, the ideal $(z^k, f(z))$ is contained in the kernel of ϕ . Conversely, every element of the kernel of ϕ is congruent modulo $(z^k, f(z))$ to a polynomial of the form $b_1z + \cdots + b_{k-1}z^{k-1}$ with $0 \le b_i < p$. If $b_1 \ne 0$, then b_1x is in R^2 which is impossible. Similarly each $b_i = 0$ for $1 \le i \le k-1$ so that the kernel of ϕ is $(z^k, f(z))$, i.e. $R \cong zI[z]/(z^k, f(z))$.

Conversely let J be any ideal of $zI[z]/(z^k, f(z))$ where $f(z) = pz - a_2z^2 - \cdots - a_{k-1}z^{k-1}$ with $0 \le a_i < p$ and let \bar{z} denote the coset of z. Every element of J has the form $b_1\bar{z} + \cdots + b_{k+1}\bar{z}^{k-1}$ with the b_i

Received by the editors November 23, 1953 and, in revised form, January 5, 1955.

¹ The author wishes to express his appreciation to the referee for many helpful suggestions, which shortened the proofs considerably.

rational integers and $0 \le b_i < p$. Let m be the smallest index such that J contains an element of the form $b_m \bar{z}^m + \cdots + b_{k-1} \bar{z}^{k-1}$ with $b_m \ne 0$. Multiplying this element by \bar{z}^{k-m-1} , we see that $b_m \bar{z}^{k-1}$ is in J whence \bar{z}^{k-1} is in J. Multiplying by \bar{z}^{k-m-2} we see that $b_m \bar{z}^{k-2} + b_{m+1} \bar{z}^{k-1}$ is in J whence \bar{z}^{k-2} is in J. Similarly, \bar{z}^{k-3} , \cdots , \bar{z}^m are in J whence $J = R^m$.

COROLLARY. If R has property *(k), then there exists a prime p such that $o(R) = p^{k-1}$ and the following properties of R imply each other:

- (1) $pR = R^2$,
- (2) the additive group of R is cyclic,
- (3) $R \cong pI/p^kI$.

PROOF. By Theorem I, there exists a prime p and a polynomial f(z) of the form $f(z) = pz - \sum_{i=1}^{k-1} a_i z^i$ with $0 \le a_i < p$ so that $R \cong zI[z]/(f(z), z^k)$. Now $zI[z]/(f(z), z^k)$ consists of rational integral linear combinations of the cosets \bar{z} , \bar{z}^2 , \cdots , \bar{z}^{k-1} where the coefficients, say b_i , are constrained by $0 \le b_i < p$. It follows that $o(R) = p^{k-1}$.

If R has property (1), then $a_2=0$ so that the additive order of \bar{z} is p^{k-1} whence \bar{z} generates the additive group of R so that R has property (2).

To see that (2) implies (3) note that $\bar{z}^2 = h\bar{z}$ for some integer h. It is easy to see that h = cp where (c, p) = 1 whence there is an integer h_1 prime to p so that $(h_1\bar{z})^2 = p(h_1\bar{z})$. Now the map $pj \rightarrow p\bar{z}$ is a homomorphism of pI onto R with kernel p^kI .

THEOREM II. Let R be a finite ring with an identity and with a non-zero radical N. Suppose further that there exists a prime p such that the only ideals of R and R, pR, \cdots , $p^kR = (0)$ and that every ideal of N is also an ideal of R. Then $R \cong I/p^kI$.

PROOF. Clearly o(R) is a power of p. Thus $pR \subseteq N$ and we have $R \supseteq N \supseteq pR$ whence N = pR. Let J be any ideal of N; then Theorem I implies that J has the form p^rR , i.e. $N^r = p^rR = J$, so that every ideal of R is a power of N. The ring N/N^2 has no ideals and hence has p elements. The mapping $x \rightarrow px$ induces a homomorphism of R/N onto N/N^2 , both considered as double modules over R. As a double module, R/N is simple; hence $R/N \cong N/N^2$ (module isomorphic) so R/N is cyclic of order p. If e is the identity of R, then R = Ie + pR and by induction $R = Ie + p^rR$, so that R = Ie. Thus $n \rightarrow ne$ is a homomorphism of I onto R with kernel p^k .

SYRACUSE UNIVERSITY