ON MODIFIED BOREL METHODS

DIETER GAIER

1. Introduction. Given a series $\sum a_n$ with partial sums s_n it is possible to associate with it the Borel transforms

$$(1.1) \ B(x;s_k) = e^{-x} \sum_{k=0}^{\infty} \frac{s_k x^k}{k!}, \ B'(x;s_k) = \int_0^x e^{-t} a(t) dt, \ a(t) = \sum_{k=0}^{\infty} \frac{a_k t^k}{k!}$$

for x>0. One says that B-lim $s_n=s[B'-\lim s_n=s]$ if $\lim_{x\to\infty} B(x; s_k) = s[\lim_{x\to\infty} B'(x; s_k)=s]$. The relations between these Borel methods B, B', and their behavior under change of index are known [8, p. 183; 6; 7].

Following a suggestion of R. P. Boas, Jr., we intend to study in this paper the modified Borel methods which arise when the continuous variable x in (1.1) is replaced by the discrete sequence of integers $n=1, 2, \cdots$. The resulting methods shall be denoted by B_I and B_I^f , and our interest is to discuss the relations among the methods B, B_I , B', B_I^f (which is done in §3) and the behavior of these methods under change of index (cf. §4). The methods B_I , B_I^f show certain abnormalities in comparison with B, B'. For example, B-lim $s_n = s$ always implies B'-lim $s_n = s$, whereas B_I -lim $s_n = s$ implies B'_I -lim $s_n = s$ if $a_n = O(K^n)$ for $K < (\pi^2 + 1)^{1/2}$ and not for $K = (\pi^2 + 1)^{1/2}$.

Our results are based on two theorems on entire functions (§2). The first allows one to infer $f(x) \rightarrow s [x \rightarrow +\infty]$ from $f(n) \rightarrow s (n=1, 2, \cdots)$ if the type of f(z) is less than π , and is well known; the second allows one to infer $f(x) \cong se^x[x \rightarrow +\infty]$ from $f(n) \cong se^n (n=1, 2, \cdots)$ if the type of f(z) is less than $(\pi^2+1)^{1/2}$.

Finally, in §5 Cesàro-Borel methods are considered but the results there are incomplete, whereas the results in §3 and §4 are in a certain sense best possible.

2. A theorem on functions of exponential type. If f(z) is regular in the angle $|\arg z| \le \alpha \ (\alpha > 0)$, it is said to be there of exponential type τ if for every $\epsilon > 0$, but for no $\epsilon < 0$, there exists a constant $M(\epsilon)$ such that

$$|f(z)| \leq M(\epsilon)e^{(\tau+\epsilon)|z|} \qquad (|\arg z| \leq \alpha).$$

The growth of f(z) along the ray arg $z=\phi$ ($|\phi| \le \alpha$) is described by the indicator function

Received by the editors January 14, 1955.

$$h_f(\phi) = \limsup_{r \to \infty} r^{-1} \log |f(re^{i\phi})|.$$

In §3 and §4 we meet the problem of going from the behavior of f(n) $(n=1, 2, \cdots)$ to the behavior of f(x) $(x \rightarrow +\infty)$. A well known theorem in this direction is 1

THEOREM 1. If f(z) is regular and of exponential type in $\left|\arg z\right|$ $\leq \alpha \leq \pi/2$ $(\alpha > 0)$, and if

$$h_f(\pm \alpha) < \pi \sin \alpha$$

then $f(n) \rightarrow 1$ $(n = 1, 2, \cdots)$ implies $f(x) \rightarrow 1$ $(x \rightarrow +\infty)$.

For our purposes we need an extension of Theorem 1 covering the case $f(n) \cong e^n$ instead of $f(n) \to 1$.

THEOREM 2. If f(z) is regular and of exponential type in $\left|\arg z\right|$ $\leq \alpha \leq \pi/2$ ($\alpha > 0$), and if

$$(2.1) h_f(\pm \alpha) < \pi \sin \alpha + a \cos \alpha (a \ge 0),$$

then

$$(2.2) f(n) \cong n^k \cdot e^{an} \ (n=1, 2, \cdots) \ implies f(x) \cong x^k \cdot e^{ax} \ (x \to +\infty) \ (k \ge 0).$$

In particular, (2.2) is true if f(z) is regular and of exponential type $\tau < (\pi^2 + a^2)^{1/2}$ in $\Re(z) \ge 0$; for $\tau = (\pi^2 + a^2)^{1/2}$ this is false.

PROOF. Consider $g(z) = f(z)e^{-az}(z+1)^{-k}$ in $|\arg z| \le \alpha$, where $(z+1)^k$ is assumed to be >0 for z>0. For the indicator function of g(z) on $\arg z = \pm \alpha$ we have

$$h_{g}(\pm \alpha) = \limsup_{r \to \infty} r^{-1} \log |g(re^{\pm i\alpha})|$$

$$= \limsup_{r \to \infty} r^{-1} \log |f(re^{\pm i\alpha})| - a \cos \alpha < \pi \sin \alpha$$

by (2.1), and hence, by Theorem 1, $g(n) \rightarrow 1$ $(n = 1, 2, \cdots)$ implies $g(x) \rightarrow 1$ $(x \rightarrow +\infty)$.

If, in particular, f(z) is of exponential type $\tau < (\pi^2 + a^2)^{1/2}$ in $\Re(z) \ge 0$, we choose α such that $tg\alpha = \pi/a$, so that

$$\pi \sin \alpha + a \cos \alpha = \pi/\sin \alpha = (\pi^2 + a^2)^{1/2} > \tau \ge h_f(\pm \alpha),$$

i.e. hypothesis (2.1) is fulfilled and hence (2.2) follows.

For the last part of the theorem consider $f(z) = e^{az}(\sin \pi z + 1)$.

¹ Theorem 1 is implicitly contained in Cartwright [2], explicitly in Macintyre [9, p. 16]. See also Pfluger [12, pp. 312-314], Duffin-Schaeffer [5, pp. 142-143] and Boas [1, p. 180].

3. Relations between the Borel methods. Now we are going to consider the methods of summability which associate with a given series the following transformations:

B:
$$e^{-x} \sum \frac{s_k x^k}{k!} (x > 0);$$
 B': $\int_0^x e^{-t} a(t) dt (x > 0);$ $a(t) = \sum \frac{a_k t^k}{k!},$

$$B_I: e^{-n} \sum \frac{s_k n^k}{k!} (n = 1, 2, \cdots); B_I': \int_0^n e^{-t} a(t) dt (n = 1, 2, \cdots).$$

The B- and B'-transformations are connected by the formal relation (Hardy [8, p. 182])

(3.1)
$$B(x; s_k) = B(x; a_k) + B'(x; s_k), \text{ i.e.}$$

$$e^{-x} \sum \frac{s_k x^k}{k!} = e^{-x} \sum \frac{a_k x^k}{k!} + \int_0^x e^{-t} a(t) dt.$$

The problem of this paragraph is to investigate the relative strength of the above Borel methods. For two summability methods V_1 and V_2 we use the notation $V_1 \rightarrow V_2$, if V_1 -lim $s_n = s$ implies always V_2 -lim $s_n = s$.

The following relations are trivial or known.

- (3.2) $B \rightarrow B_I$ and $B' \rightarrow B_I'$.
- (3.3) $B \rightarrow B'$ (Hardy [8, p. 183]).
- (3.4) $B' \rightarrow B$ if $a_n = O(K^n)$ for some K > 0 (Gaier [6, p. 455]). This becomes false if $a_n = O(K^n)$ is replaced by $a_n = O(n^{\epsilon n}K^n)$ (ϵ arbitrary > 0) (Gaier [7]).

Our new results about the relations between the Borel methods are summarized in

THEOREM 3. (1) $B_I \rightarrow B$, $B_I \rightarrow B'$, and $B_I \rightarrow B_I'$, if $a_n = O(K^n)$ for $K < (\pi^2 + 1)^{1/2}$, but not for $K = (\pi^2 + 1)^{1/2}$.

(2) $B_I' \to B'$, $B_I' \to B$, and $B_I' \to B_I$, if $a_n = O(K^n)$ for $K < (\pi^2 + 1)^{1/2}$, but not for $K = (\pi^2 + 1)^{1/2}$.

Note, in particular, that there is no analogy to (3.3) for the methods B_I and B_I' .

PROOF. (1) (a) $B_I \rightarrow B$. (i) If $a_n = O(K^n)$ $(K < (\pi^2 + 1)^{1/2})$, then $|s_n| \leq MK'^n (K' < (\pi^2 + 1)^{1/2})$ and the entire function $\phi(z) = \sum s_n z^n/n!$ satisfies the estimation

$$|\phi(z)| \leq M \sum_{n} \frac{K'^n |z|^n}{n!} = Me^{K'|z|},$$

i.e. it is of type $\tau < (\pi^2 + 1)^{1/2}$. Therefore the assumption $\phi(n) \cong A \cdot e^n$ $(n = 1, 2, \cdots)$ implies, by Theorem 2, $\phi(x) \cong A \cdot e^x$ $(x \to +\infty)$, i.e. B-lim $s_n = A$.

(ii) Define s_n by $\sum (s_n z^n/n!) = e^z (\sin \pi z + 1)$. Then $(\alpha)B_I$ - $\lim s_n = 1$, but not B- $\lim s_n = 1$. (β) One finds immediately

$$s_n = 1 + (1/2i) \{ (1 + i\pi)^n - (1 - i\pi)^n \},$$

so that $s_n = O((\pi^2 + 1)^{n/2})$ and also $a_n = O((\pi^2 + 1)^{n/2})$ are fulfilled.

(b) $B_I \rightarrow B'$. (i) The assumption about the a_n implies (Case (a) and (3.3))

$$B_I \to B \to B'$$
.

- (ii) Define s_n as above. Then (a) B_I -lim $s_n = 1$, but not B'-lim $s_n = 1$; otherwise B'-lim $s_n = 1$ would by (3.4) imply B-lim $s_n = 1$ which is false. (β) $a_n = O((\pi^2 + 1)^{n/2})$ is fulfilled.
- (c) $B_I \rightarrow B_I'$. (i) The assumption about the a_n implies (Case (b) and (3.2))

$$B_I \to B' \to B_I'$$
.

(ii) Define a_n by

$$\int_0^z e^{-t}a(t)dt = \sin (\pi z + \alpha); \qquad tg\alpha = -\pi.$$

Then (a) B_I -lim $s_n = 0$. For, by the relation (3.1), we have

$$B(x; s_k) = \frac{d}{dx} \sin(\pi x + \alpha) + \sin(\pi x + \alpha),$$

which, taken at x = n $(n = 1, 2, \cdots)$, becomes

$$B(n; s_k) = \cos \pi n (\sin \alpha + \pi \cos \alpha) = 0 \qquad (n = 1, 2, \cdots).$$

On the other hand B_1' -lim s_n does not exist. (β) We have

$$a(t) = e^t \cdot \pi \cos (\pi t + \alpha) = \sum \frac{a_k t^k}{k!},$$

from which $a_n = O((\pi^2 + 1)^{n/2})$ is immediate.

(2) (a) $B_1' \to B'$. (i) If $a_n = O(K^n)$ $(K < (\pi^2 + 1)^{1/2})$, then a(t) is an entire function of exponential type $\tau < (\pi^2 + 1)^{1/2}$. If therefore $g(z) = e^{-z}a(z)$, we have for the indicator function of g(z) taken for the rays arg $z = \pm \alpha$ $(tg\alpha = \pi)$

$$h_{\varrho}(\pm \alpha) = h_{\varrho}(\pm \alpha) - \cos \alpha < (\pi^2 + 1)^{1/2} - \cos \alpha = \pi \sin \alpha,$$

and hence for the function $\phi(z) = \int_0^z e^{-t} a(t) dt$

$$h_{\phi}(\pm \alpha) < \pi \sin \alpha$$
,

so that an application of Theorem 1 infers $\phi(x) \rightarrow A(x \rightarrow +\infty)$ from $\phi(n) \rightarrow A(n = 1, 2, \cdots)$.

- (ii) Define a_n by $\int_0^z e^{-t} a(t) dt = \sin \pi z$. Obviously B_f -lim $s_n = 0$, but not B'-lim $s_n = 0$. The validity of $a_n = O((\pi^2 + 1)^{n/2})$ is again immediate.
- (b) $B_I' \rightarrow B$. (i) The assumption about the a_n implies (Case (a) and (3.4))

$$B_t' \to B' \to B$$
.

- (ii) Define a_n as in (2) (a). B-lim $s_n = 0$ cannot hold since B'-lim s_n does not exist.
 - (c) $B_I \rightarrow B_I$. (i) By the preceding case $B_I' \rightarrow B \rightarrow B_I$.
- (ii) Define a_n as in (2) (a). By (3.1), the *B*-transform of the corresponding sequence s_n is $\sin \pi x + \pi \cos \pi x$, so that $B_I(n; s_k) = \pm \pi (n = 1, 2, \cdots)$.
- 4. On the change of index for the methods B_I and B_I' . We consider the two series

$$\sum a_k = a_0 + a_1 + a_2 + \cdots \qquad \text{with partial sums } s_n$$

and

$$\sum b_k = 0 + a_0 + a_1 + \cdots$$
 with partial sums t_n .

The problem is to determine under what conditions

$$(4.1.a) V-\lim s_n = s implies V-\lim t_n = s$$

or

$$(4.1.b) V-\lim t_n = s implies V-\lim s_n = s,$$

where V is one of the methods B_I , B_I' .

In addition to (3.1) we shall need the relations

(4.2)
$$B'(x; s_k) = B(x; t_k)$$
 (Hardy [8, p. 182])

and

$$(4.3) B'(x; s_k) = B(x; b_k) + B'(x; t_k).$$

² This problem has been treated for other methods of summability; cf. Doetsch [4], p. 464 ff. for B; Doetsch [3], for C_kB ; Gaier [6] and [7] for B; Meyer-König [10, p. 270] and Meyer-König and Zeller [11, pp. 348-349] for T_{α} , S_{α} , T'_{α} ; Wollan [13, p. 583] for Euler summability of double series.

Note that $B(x; b_k) = (d/dx)B'(x; t_k)$. The proof of (4.3) follows from³

$$B'(x;t_k) = \int_0^x e^{-t}b(t)dt = -e^{-t}b(t)\Big|_0^x + \int_0^x e^{-t}a(t)dt = -B(x;b_k) + B'(x;s_k).$$

THEOREM 4. If V is one of the methods B_I , B_I' , both statements (4.1.a) and (4.1.b) are correct if $a_n = O(K^n)$ for $K < (\pi^2 + 1)^{1/2}$, but not for $K = (\pi^2 + 1)^{1/2}$.

Note, in particular, that there is no analogy to the fact that (4.1.a) holds for V=B without restriction of the a_n .

PROOF. (1) $V = B_I$. (a) By (4.2), B_I -lim $t_n = s$ if and only if B_I' -lim $s_n = s$, which follows from B_I -lim $s_n = s$ if $a_n = O(K^n)$ for $K < (\pi^2 + 1)^{1/2}$, but not for $K = (\pi^2 + 1)^{1/2}$ (Theorem 3, 1c).

- (b) Again, B_I -lim $t_n = s$ if and only if B_I' -lim $s_n = s$, which implies B_I -lim $s_n = s$ if $a_n = O(K^n)$ for $K < (\pi^2 + 1)^{1/2}$, but not for $K = (\pi^2 + 1)^{1/2}$ (Theorem 3, 2c).
- (2) $V = B_I'$. (a) (i) If $a_n = O(K^n)(K < (\pi^2 + 1)^{1/2})$, B_I' -lim $s_n = s$ implies B'-lim $s_n = s$ so that by (4.3) $\phi(x) + \phi'(x) \rightarrow s(x \rightarrow +\infty) [\phi'(x) = B(x; b_k)]$, and consequently (Hardy [8, p. 107]) $\phi(x) \rightarrow s(x \rightarrow +\infty)$, i.e. B_I' -lim $t_n = s$.
- (ii) Define b_n by $\int_0^x e^{-t}b(t)dt = \sin(\pi x + \alpha)$ with $tg\alpha = -\pi$ and proceed as in Theorem 3, 1(c) (ii). We get B_1 -lim $s_n = 0$ whereas B_1 -lim t_n does not exist, although $a_n = O((\pi^2 + 1)^{n/2})$.
- (b) (i) If $a_n = O(K^n)(K < (\pi^2 + 1)^{1/2})$, B_1' -lim $t_n = s$ implies B'-lim $t_n = s$ (Theorem 2), and since $B'(z; t_k)$ is an entire function of exponential type tending to s as $z \to +\infty$, its derivative $e^{-s}b(z) = B(z; b_k)$ tends to zero as $z \to +\infty$ (Boas [1, p. 212] and Gaier [6, p. 454]) which, by (4.3), implies B_1' -lim $s_n = s$.
- (ii) Define b_n by $\int_0^x e^{-t}b(t)dt = \sin \pi x$. Then B_I' -lim $t_n = 0$, but not B_I' -lim $s_n = 0$, although $a_n = O((\pi^2 + 1)^{n/2})$.
- 5. Cesàro-Borel methods. Doetsch [3] was the first to consider the Cesàro-Borel transform

$$C_k B(x; s_k) = k x^{-k} \int_0^x B(t; s_k) (x - t)^{k-1} dt \qquad (k > 0, x \ge 0),$$

and in view of our results in §3 one can ask what relations there are

^{*} Let $b(t) = \sum (b_n t^n/n!)$, so that b'(t) = a(t).

for example between the methods $C_k B$ and $C_k B_I$ ($C_k = \text{matrix}$ method in the latter case). It is not surprising that in general

(5.1)
$$C_k B_I$$
-lim $s_n = s$ does not imply $C_k B$ -lim $s_n = s$;

however, also

(5.2)
$$C_k B$$
-lim $s_n = s$ does not imply $C_k B_I$ -lim $s_n = s$.

Equivalent to the problem raised is, of course, under what conditions for an entire function f(z) does

$$C_k$$
-lim $f(n) = s$ imply C_k -lim $f(x) = s$

and conversely. For k=1 the statement (5.1) follows from consideration of $f(z) = z \sin \pi z$, whereas for the proof of (5.2) we take an entire function f(z) of exponential type ($\langle 2\pi + \epsilon \rangle$) which is, for x > 0,

$$f(x) = x^{1/2} \cos 2\pi x + o(1).4$$

Then obviously C_1 -lim $f(n) = +\infty$, but C_1 -lim f(x) = 0. The author has no contribution towards the solution of this problem.

REFERENCES

- 1. R. P. Boas, Jr., Entire functions, New York, 1954.
- 2. M. L. Cartwright, On certain integral functions of order 1, Quart. J. Math. Oxford Ser. vol. 7 (1936) pp. 46-55.
- 3. G. Doetsch, Eine neue Verallgemeinerung der Borelschen Summabilitätstheorie der divergenten Reihen, Dissertation, Göttingen, 1920.
 - 4. ——, Handbuch der Laplace-Transformation I, Basel, 1950.
- 5. R. J. Duffin and A. C. Schaeffer, Power series with bounded coefficients, Amer. J. Math. vol. 67 (1945) pp. 141-154.
- 6. D. Gaier, Zur Frage der Indexverschiebung beim Borel-Verfahren, Math. Zeit. vol. 58 (1953) pp. 453-455.
- 7. ——, On the change of index for summable series, to appear in Pacific Journal of Mathematics.
 - 8. G. H. Hardy, Divergent series, Oxford, 1949.
- 9. A. J. Macintyre, Laplace's transformation and integral functions, Proc. London Math. Soc. (2) vol. 45 (1938-1939) pp. 1-20.
- 10. W. Meyer-König, Untersuchungen über einige verwandte Limitierungsverfahren, Math. Zeit. vol. 52 (1949) pp. 257-304.
- 11. W. Meyer-König and K. Zeller, Über das Taylorsche Summierungsverfahren, Math. Zeit. vol. 60 (1954) pp. 348-352.
- 12. A. Pfluger, On analytic functions bounded at the lattice points, Proc. London Math. Soc. (2) vol. 42 (1936-1937) pp. 305-315.
- 13. G. N. Wollan, On Euler methods of summability for double series, Proc. Amer. Math. Soc. vol. 4 (1953) pp. 583-587.

TECHNISCHE HOCHSCHULE, STUTTGART

⁴ To obtain such a function apply Macintyre's lemma [1, p. 80] to $f(z) = z^{1/2} \cdot \cos 2\pi z$; $f(z/2+\epsilon)$ is of type $<\pi$ in $\Re(z) \ge 0$.