NOTE ON SOME OSCILLATION CRITERIA1

C. R. PUTNAM

1. The differential equation

$$(1) x'' + fx = 0,$$

in which f=f(t) is a continuous function on the half-line $0 \le t < \infty$, is said to be oscillatory if some (hence every) nontrivial solution x=x(t) possesses an infinity of zeros on $0 \le t < \infty$ (clustering only at $+\infty$). Various criteria for the oscillatory nature of (1) are known; see, e.g., [1] and the references cited there.

It was shown by Wintner [2] that if $F(t) \rightarrow \infty$ as $t \rightarrow \infty$, where

(2)
$$F(t) = \int_0^t f(s)ds,$$

or even if

(3)
$$G(t) \equiv t^{-1} \int_0^t F(s) ds \to \infty, \qquad t \to \infty,$$

then (1) must be oscillatory. Various refinements as well as variations of the criterion (3) were obtained by Hartman in [1]. The present note will be devoted to the derivation of two further criteria, given in (*) and (**) below, involving the function G(t) of (3).

Let E(M, T) denote the set of points t of the half-line $T \le t < \infty$ for which the function G(t) of (3) satisfies the inequality G(t) > M, where M is a positive constant. The following will be proved:

(*) Suppose that there exists a pair of sequences T_n , M_n satisfying $T_n \to \infty$, $M_n \to \infty$ as $n \to \infty$, and for which

(4)
$$\exp (M_n T_n) \operatorname{meas} E(M_n, T_n) \to \infty, \qquad n \to \infty.$$

Then the equation (1) is oscillatory.

Since (3) implies meas $E(M, T) = \infty$ whenever M, T > 0, the sufficiency of (3) for the oscillatory nature of (1) is a consequence of (*). In fact, the proof of (*) will depend upon a refinement of the argument used by Wintner in [2] in obtaining the criterion (3).

It is known that if (3) is relaxed to

Received by the editors February 23, 1955.

¹ This work was supported by the National Science Foundation research grant NSF-G481.

(5)
$$\limsup T^{-1} \int_0^T F(t) dt = \infty, \qquad T \to \infty,$$

then (1) need not be oscillatory; (see (II bis) of [1, p. 390]). It will be shown however, as a corollary of (*), that this situation cannot occur if, for instance, f(t), or even F(t), is bounded exponentially from below. Thus,

(**) If, in addition to (5), the function F(t) of (2) also satisfies

$$(6) F(t) > -\exp(Ct),$$

for some positive constant C, then the equation (1) is oscillatory.

2. **Proof of** (*). If x = x(t) and y = y(t) denote two linearly independent solutions of (1), it is clear from [2] that the equation (1) is oscillatory if and only if

(7)
$$\int_{0}^{\infty} (x^{2} + y^{2})^{-1} dt = \infty.$$

In order to prove (*), suppose, if possible, that (1) is nonoscillatory. It will be shown that this assumption implies (7), hence a contradiction, and the proof of (*) will be complete. Since, for large values of t, the logarithmic derivative, z, of a solution of (1) satisfies the Riccati equation $z'+z^2+f=0$, the inequality $x^2+y^2 \le \text{const.}$ exp $(-2\int_0^t F(s)ds+Kt)$, in which K denotes a constant, holds for $0 \le t < \infty$; cf. formula line (7) of [2]. Consequently,

(8)
$$\int_0^\infty (x^2 + y^2)^{-1} dt \ge \text{const.} \int_0^\infty \exp\left[(2G - K)t\right] dt,$$

where G = G(t) is defined by (3). Let M > K. In view of (8) and the inequalities

$$\int_0^\infty \exp\left[(2G - K)t\right] dt \ge \int_T^\infty \exp\left[(2G - K)t\right] dt$$

$$\ge \exp\left[(2M - K)T\right] \operatorname{meas} E(M, T),$$

it follows that

(9)
$$\int_0^\infty (x^2 + y^2)^{-1} dt \ge \text{const. exp } (MT) \text{ meas } E(M, T).$$

Since the left side of the inequality (9) is independent of M and T, relation (4) implies (7). This completes the proof of (*).

3. Proof of (**). In view of (6) and the relation (tG)' = F, the inequality

$$(10) (tG)' > -\exp(Ct)$$

holds for some positive constant C. If $a \le t \le b$ and G(a) > 0, a quadrature of (10) leads to $tG(t) - aG(a) > -\int_a^t \exp(Cs)ds > -(b-a) \cdot \exp(Cb)$, and hence

(11)
$$G(t) > ab^{-1}G(a) - a^{-1}(b-a) \exp(Cb), \qquad a \le t \le b.$$

According to (5), there exists a sequence $t=t_1 < t_2 < \cdots$ such that $t_n \to \infty$ and $G(t_n) \to \infty$ as $n \to \infty$. For a given M > 0, choose $a = t_n$ (for some n depending on M) such that $G(t_n) > 2M$, and let b be defined by $b-a = \exp(-Cb)$. Then relation (11) implies $G(t) > 2ab^{-1}M - a^{-1}$; hence, since $b-a \to 0$ as $a \to \infty$, G(t) > M for $a \le t \le b$ and a sufficiently large. Consequently, the inequality

$$\exp(Ma)$$
 meas $E(M, a) \ge \exp(Ma - Cb)$

holds for certain arbitrarily large numbers a and $b=a+\exp{(-Cb)}$. Clearly, for every fixed M>C, $\exp{(MT)}$ meas $E(M,T)\to\infty$ for a sequence of T(=a) values tending to ∞ . In particular, relation (4) holds and (*) now implies (**).

REFERENCES

- 1. P. Hartman, On nonoscillatory linear differential equations of second order, Amer. J. Math. vol. 74 (1952) pp. 389-400.
- 2. A. Wintner, A criterion of oscillatory stability, Quarterly of Applied Mathematics vol. 7 (1949) pp. 115-117.

PURDUE UNIVERSITY