
A BOUNDARY VALUE PROBLEM FOR A SINGULARLY
PERTURBED DIFFERENTIAL EQUATION

S. HABER AND N. LEVINSON

The two point boundary value problem (' = d/dx)

(1) ey" = f(x, y, y', a),        y(0) = a,       y(l) = b

for small e will be solved in the case where the degenerate equation

(2) /(*, «, «', 0) = 0

has a solution «=g(x) for O^x^Xo with g(0)=a and u = h(x) tor

xo^x^l with h(l)=b where g(x0)=h(x0). It will be assumed that

g'(xo)*h'(xo).

The case of (1) with f=l — (y')t and where \a — b\ <1 can be

treated explicitly. For small e>0 the solution of (1) tends to the

broken line solution of (2) with g(x)=a — x and h = b — 1+x and

Xo = (l+a—b)/2. (There is another broken line solution of (2) with

g = a+x and h = b+l—x but there is no solution of (1) for e>0 near

this broken line solution of (2). As will be seen the criteria below will

single out only the first broken line solution.)

To formulate the general problem more precisely let yo = g(x0)

= h(x0) and let Mi = g'(x0), M2 = ^'(xo). The case ju2>jui will be con-

sidered here. (The case pi <pi can be treated in the same way or can

be reduced to the first case by replacing y by —y.) Let a, fi, and e0 be

positive constants. Let U(x) =g(x) for 0gx^x0 and let U(x)=h(x)

for xo^x^l. Let R be the region of (x, y, w, e) space determined by

0^eg«o, and by the union of

0gx<x„<x=l,     \y- U(x) |   £ a,     \w- U'(x) |   ^ fi

and

| x - Xo |   ^ a,     \ y — yo\   £ a,    pi — fi g w ^ pt + fi.

In R let f(x, y, w, e) be real-valued and of class C. Moreover let

/„(=6//9y) and/„ exist and be of class C.
With no loss in generality it may be assumed that

Pi < 0 < pi

since replacing y by y+(pi+pi)x/2 will achieve this.

Theorem I. Letf(x, y, w, e),f„ andfw be of class C in R and let the
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degenerate system (2) have the solutions g(x) and h(x) over [0, x0] and

[xo, 1 ] respectively as described above. Let

/-(*, «(*), g'(x), 0) > 0, 0 ^ x g xo,

/.(*, *(*). *'(*). 0) < 0, xo ^ x ^ 1.
Further let

(4) f(x0, yo, w, 0) > 0, mi < w < m.

Then for sufficiently small e > 0 there exists a solution of the boundary

value problem (1)

y = <*>(x, e),

5«cA that

(x, *(*, «),*'(*,e), e) € # /urOgjigl.

Moreover as e—>0+, $(x, e)—»(7(x) uniformly over [0, l] and *'(x, e)

—*U'(x) uniformly over [0, x0 —50] and [x0+50, l] for any fixed

8o>0.

Theorem II. The solution d>(x, e) of (1) is unique in that given an

a> > 0 there exists 5i > 0 such that for small e > 0 there is no solution

ty(x, e) of (1) other than <£>(x, e) which satisfies

| \P(x, «) - E/(x) |   < 5i, | x — xo |   < w.

The solution « = &(x) of (2) can be continued to the left over some

interval since

fw(x0, yo, m, 0) 9± 0.

Thus there is a 5 > 0 such that h(x) is a solution of (2) for Xo — 5 ̂  x ^ 1

and similarly g(x) is a solution of (2) for 0^x^x0+5. Let p be a

region of (£, 7?) space determined by

I xo - { |   =g 5, | r, - k(Q |   ^ A

where A will be specified later.

It will be shown that there is an ei > 0 such that for 0 < « < ei and

for (£, r))Ep there is a solution y=<p(x, £, v, e) of

(5) ey" = fix, y, y e), yft) = „, /(D = 0,

for ij^x^l. Moreover (x, <f>, <j>', e)ER- It will also be shown that for

each £ there is a unique r] = F(£), (£, F(£)) Ep, such that

(Of course F also depends on €.) It will be shown that F is differ-
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entiable and F'>0 and that as «-K), F(£)-+h(Z), |£-x0| g5.

In the same way a curve 77 = G(£) exists such that (5) has a solution

4>(x, £, G(£), e), 0^x^£, and ^(0, £, G, e) =a. Moreover G'(£)<0 and

G(£)—>g(£) over |£ — x0| ^5 as e—>0. Since y = g(x) and y = ft(x) inter-

sect at x = x0 it follows that, for small e, ti = G(£) and y = F(l-) must

intersect for |£ — x0| ^8 and because F'>0 and G'<0 the point of

intersection is unique. The solution of ey" =/, Ogx^l with zero

slope at the point of intersection is clearly a solution of (1). Thus the

proof of Theorem I has been made to depend on the proof that F

(and G) exist and have the properties described above.

Proof of the existence of <p(x, £, n, e). Because/(x, h, h', 0) =0 and

/„(x, h, h', 0)<0 it follows that for l^x^x0 —5 and \u — h\ +\w — h'\
small there is a unique solution w — J(x, u) of f(x, u, w, 0) =0 and /

and /„ are of class C. Since u' = J(x, u) has u = h(x) as a solution over

[x0 — 8, 1 ] it follows that if A is small, then for any (£, rf) of p there is a

solution u=\p(x, £, n) of u' = J(x, u) over [x0 —5, l] or that

f(x, u, «', 0) = 0, «(£) = ,,

has a solution ^(x, £, v) over [x0 — 5, l]. Moreover because /„ is

bounded, ip(x, £, v)—*h(x) and yj/'-^h' as ij—»A(£), and because /„ is

continuous, d^/dt? exists and is positive. Thus ^(1, £, n) is monotone

increasing in 77. For n>h(l-), \p(l, |, v)>b and similarly for r\<h(^),

ta,z,v)<b.
The solution of (5), <p(x, £, 77, e), certainly exists for x near £. It will

be shown that for (£, 77) (Ep, (x, <f>, <p'', e) GR as x increases so that <f>

can be continued to x = 1.

It follows from (4) and the continuity of/ that given any 7>0

there is a ko>0 and 5'>0 such that for |x —x0| +|y — yo| <8',

(6) f(x, y, w, 0) > k0, pi + y < w < m — y.

It is also the case that (3) and the continuity of/„ imply the existence

of a 5">0 and k>0 such that

(7) /.(*, y, w, 0) < - k, \y- h(x) \   +  \w- h'(x) | g 5"

for x0 — Sgxgl.

The notation 0(e) will be used to denote a continuous function of e

for 0^e<€o with 0(0) =0. The function 0 will be used in the generic

sense and may be different in each formula. The generic constant A,

which will depend only on/(x, y, w, e), in R, will also be used. Let

7<5"/10. Using (6) it follows that so long as |x—x0| +|</>— y'o| <8', e

is small, and 0^<p'^pi—7

e<b" = /(*, <p, <*>', «) > k0/2.
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Integrating the inequality yields e<b'(x, £, rj, e)>£0(x —£)/2 or

x — £ < 2efi2/k0.

Since

(8) | *(*, |, ij, e) - V |   ^ max | 0' | (x - Q ̂  2t£/kt

it follows that if e is small, A small, and 5 decreased if necessary, then

<t>'(x, £, ?/, e) first becomes p.2—y for some Xi<£ + 2ep.2/ko.

Let z-4>(x, £, t?, e) -^(x, £, 77). Then

(9) €z" = /(*, <*>, 0', e) - /(x, *, ^VO) - efr".

For £^x^x1( |^(x, 1,77) —tj| ^A(xi—l;) =Ae and

I i'(x, fc l) - «|   ̂   I *'(*, I, tj) - *'(*) I  + I *'(*) - Mi I

Thus at x=xi

(10) \z\   £Ae, \z'\   £y + A(e + A).

Using (9) and the mean value theorem

(11) ez" = Pz' +Qz+S

where |S| ^d(e), \Q\ ^A and by (7)

(12) P g - k

so long as

(13) I <b - h I  + \<b' - h'\   ^ 5".

Choose A small enough so that

(14) U - * I  + I lA' - *' I   ̂  8"/2.
From (11)

z'(x) = z'(xi) exp ( f  P(s)ds/e j

+ 7 / (^2 + s) exp ( / Xp^ds/() dL

From (10) and (12) for x^xi (and so long as (13) holds)

I z'(x) I   ^ [y + A(e + A)] exp (-*(* - Xi)/e) + 0(e)

(15) A rx
+ — I     I 8(0 I  exp(-k(x-t)/e)dt.

e J X!
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Integrating (15) and using (10) there follows for x^xt

| *(*) |   ^ 6(e) + A f   | z(t) | dt.
J Xl

This implies

C* \       i *(«)
|2(/)|^g^-(expU(x-x1)) - 1)

J xi A

or

(16) | z(x) |   g d&e* - 6(e).

In (15) this gives

(17) | z'(x) \   <(y + AA) exp (-7t(x - Xi)/e) + 6(e).

Thus if e and A are small enough then (16) and (17) with (14) show

that (13) will hold for xi^xgl. Thus <p exists for £^x^l and from

the derivation above, (10) and (16), and (17),

(18) |/.(*,*,*',«) |   <A, £:g xg xi,

(19) I/,(*,*,*',«)| &a, e^*^i,

and using (7)

(20) /„(x, 0, 0', e) g - ife/2, Ii ^ * | 1.

Proof 2fta/ d<p/dri>0. Because/„ and/„ exist, w(x) =d<b/dr] exists.

It will be shown that w(x) 2:0. Clearly

wtt) = 1,        w'tt) = 0,

and

(21) €TO"    -   /„(*,   0,    0',   «)«)'    -   fyW    =    0.

Transposing fyw and integrating the left side by using the usual in-

tegrating factor there follows

A  C x

| w'(x) |  g — I     | w(5) | exp (A(x — s)/t)ds.

For £^x^Xi there follows since Xi<£+.4€

A  f x
| w'(x) |  ^ — I     | w(s) I ds.

« J{

Thus so long as |w>| i%2
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(22) | w'(x) | g A, £ ^ * ^ *i.

But

(23) | w(x) - 1 | g  j     | w'(s) | as ^ 4e, $ g x ^ Xj.

For x ^ Xi let

w = exp ( — X(x — Xi)/e)p

where the constant X will be chosen later. Then

w' = exp (-X(x - xi)/e) (p'-p\,

/ 2X X2    \
w" = exp (-X(x - xi)/e) lp"-p' + — p\.

In (21) this gives

A2 + X/„ \
(24) ep" - (2X + fw)p' + {--i- - fy)p = 0.

Choose \ = k/4 so by (20)

(25) X2 + X/„ < - k2/16.

From (22) and (23) it follows that

p(xi) > 1/2

and thus for small e

P'(xi) > 0.

By (25) the coefficient of p in (24) is negative. Thus p which starts

out positive increasing can never have p' = 0 and so p is increasing

over [xi, l] and therefore positive. Thus w is positive, that is

d<j>
(26) — (x, f, e) > 0, £ g x ^ 1.

dri

Proof of the existence of F(£). It will next be shown that for any

£. \% — %o\ <8, there is a unique v = F(0, \v — K£)\ <A, such that

(27) *(1, *,*(*),«)-».

Indeed let m = H0 -A/2. Then ^(1, £, t?,) <b. Because of (16) it fol-
lows that for small «

*(1, f. 9i. 0 < b.
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Similarly for 772 = h(£)+ A/2, <b(l, £, 772, e)>6. Since 0(1, £, 77, e) is con-

tinuous in 77 and because of (26) the existence of a unique F(£) follows.

Because d<p/dr]j*0 and is continuous it follows that F(£) is a con-

tinuous function of £ (and in fact of (ij, e)).

Because d<p/dt; also exists and is continuous it follows from (27) that

F'(£) exists and is given by

dd> /d<b
(28) F'(Q = -—(1,&F(&€)/-(1,$,F(0,«).

d£ /    on

Let

v(x) = — (x, £, 77, e).

Then it is easily seen, since <£(£, £, 77, e) =77 and <£'(£, £, 77, e) =0, that

(29) v(0 = 0,        v'(0 = - /({, 77, 0,«)/« < 0.

Now v(x) is a solution of (21). Clearly w and » are independent

solutions of (21) and thus the Wronskian

7(x) = w'(x)v(x) — w(x)v'(x)

is nonvanishing. From (29) and w(£) = l it follows that 7(£)>0so

that J(x) >0. Consider now

-(x, £, 77, e)
d d£ d    v       J(x)

(30)- =-= _LZ > 0.
dx     d<£ dx w        w2

— (x, £, 77, e)
077

Since at x=£, v/w = 0 it follows from (30) that at x = l, — v/w>0.

In (28) this makes

F(& > 0.

As was shown below (5) this proves Theorem I.

The proof of Theorem II follows easily also. Indeed let Sf^x, «) be a

solution of (1) different from $(x, €) and satisfying

I ̂ (x, e) — U(x) I   < 81, I x — x01   < co.

Because Sf is close to U and because U'(xi — 0) <0 and ?7'(xi+0) >0

it is clear that given any 82 >0 then, if 5i is chosen small enough,

Sf'(x, e) must vanish at a point x=£, |(j — x0| <82. If 52g5 and 5i^A

then^(£, e) = F(£) and also ^(£, e)=G(£) and thus *(x, e)=<l>(x, e).
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