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Introduction. We consider a partial differential equation of second

order:

n

(1) L(u) =   £ au(Pi, p2,--- , pn)d2u/dxidxj = 0
t.j-i

with » independent variables x = (xi, x2, • • • , x„), the coefficients

are functions of the first partial derivatives, a,/ = a/,-, pi=du/dxi, but

they do not depend on x. The equation of motion of compressible

fluids is, for instance, of the form (1). Certain types of degenerate

compressible flows, namely the simple and double waves, are of prac-

tical importance and have been treated by various authors, [l; 4; 6].

An "i-tuple wave" u, ii it exists, is a solution of (1) whose first partial

derivatives satisfy n—s functional relations among themselves (for

this notion, see [2, pp. 76-78]). Let the relations be represented by

(2) pa = F"(pi, p2l- ■ -, p.), a = 5 + 1, 5 + 2, • • •, n,

where the functions F" are assumed to have continuous second de-

rivatives. A necessary and sufficient condition for the existence of

5-tuple waves is that F" satisfy a system of partial differential equa-

tions (15) of second order and degree s — 1 in the variables pi, pi, ■ • • ,

p,. These equations are derived in §1, in a very simple manner, by the

use of elementary contact transformations. In the case of 5 = 2 (see

(19)), and the case of s = n — l (centered wave, see (22)), there are as

many differential equations as the number of unknown functions.

The existence of solutions of (19) leads to hyperbolic double waves of

(1). Conversely, when a.y are constants, we may make use of the ex-

plicit formulas for solutions of (1) to solve the nonlinear differential

equations (19). This is done in §3.

1. The indices i and j are to run from 1 to n, k and I from 1 to s,

and a and /3 from s + 1 to n, l^s^n; terms with repeated indices are

to be summed. We introduce new independent variables x' = (x{,

x{, • • • , x/i) and dependent variable w'(x') by
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(3) Xk   = pk, xi  = xa, u' = u — pkXk.

The following simple calculation:

du' = du — pkdxk — Xkdpk — pidxt — pkdxk — xkdpk

= PadXa  + ( — Xk)dx{,

gives the first partial derivatives pi —du'/dxl by

(4) pi = - xk,       pi = pa.

(3) and (4) together form an elementary contact transformation. The

equation dpi — p'tJdxj can be written as follows,

(5) — dxk = p'k»dxf, + p'kidpi.

We assume that the determinant D =\p'a\ of 5 rows and columns

is different from zero. Then we can solve for dpi in (5) and obtain

(6) Ddpi = - Qik(p'kpdxi! + dxk),

where Qik is the cofactor of pit in the determinant D. The remaining

n—s differentials dpa are found by making use of our assumption on

the existing functional relations (2):

(7) Ddpa = DdpidF«/dp, = - Qit(p't«dxf + dxk)dF«/dpi.

Since dpi = pijdxj, one can derive from (6) and (7) the second deriva-

tives pa in terms of D~l, Qik, p'a, pL and dF"/dpk.

On the other hand we can easily establish the following:

(8) «' = xf,F"(x{, xi, ■ ■ ■, x,') + G(x[, xi, • • • , x',),

(9) p'ka = BF"/dxk,

(10) p'ki = xad2F°/dx'idx'k + dKi/dx'idx'k,

where G is some function independent of xa'. Indeed from p'ka=p'at

and pa =pa it follows (9) by the differentiation of pa = Fa with respect

to xk. The right-hand side of (9) is independent of x« , from which

we conclude that

(11) pi = xadF"/dxi +Gk(x{, xi, ■ ■ ■ , xi)

holds. Due to p'ti = plk we must have dGk/dx[=dGi/dxi, thus it is

justified to write Gk=dG/dx't. From (11) follow (8) and (10).

We substitute (9) and (10) respectively into the right-hand side of

(6) and (7), and use (3) to replace xi by pk, and x~ by x„. The follow-

ing formulas are immediately verified:
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Dpik = - Qn,       Dp,B = - QikdFf>/dpk,

DpaB = - QlkdF"/dp,dF^/dpk.

The above expressions for p,,- are now inserted into L(u). Because

L(u) is homogeneous of second order, the factor D can be cancelled,

and (1) becomes

(13) (alk + 2alsdF<>/dpk + a^dF^/dp^/dp^Qn = 0.

Note that the coefficients of Qik in (13) are functions of pk and are

independent of x„'.

Now, each Qtk is a cofactor in D and is therefore a sum of (s — 1)!

products + II^i*. By substituting (10) into each factor and by carry-

ing out the multiplication, each product becomes an inhomogeneous

polynomial of xj of degree s — 1. Each monomial is of the form

x7+f x7+t • • • x£" with non-negative exponents, 0^m,+i + ma+2+ ■ ■ ■

-\-mn^s — l. There are altogether C(n — 1, 5—1) distinct monomials,

each corresponds to an arrangement of the exponents (m) = (m,+i,

m,+2, • ■ ■ , mn). We add up all the (5— 1)! products in Qlk and collect

the terms with the same monomial, we find

(14) Qn =  2a Plh   *»+l   *«+2    • • •  Xn  ,
(m)

where the summation stretches over C(n— 1, s — 1) terms. Each

Pu? is a homogeneous polynomial of 5— 1 degree in the second deriva-

tives of F" and G with integer coefficients.

Theorem 1. A necessary and sufficient condition for the existence of

a degenerate solution u, of the type of an s-tuple wave, with nonvanishing

determinant \ d2u/dxkdxi\, is the following: then — 5+1 functions Fa and

G satisfy a system of C(n —1,5 — 1) differential equations of second order

and degree s — 1, in the variables pk,

(15) (an + 2awdF0/dpk + a^dF"'/dptdF**/dpk)p\? = 0,

with

(16) I xad2F"/dpldpk + d2G/dpidpk l  ^ 0.

Proof. The condition is necessary. By the first equation in (12),

\pik\ 5*0 leads to TM0 and hence (16). We put (14) into (13) and

separate the distinct monomials from one another, which results in

splitting up (13) into C(n — 1, 5 — 1) differential equations (15) as

mentioned in the theorem.
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Conversely, if one substitutes a solution of (15) into (8) and (3),

one finds

(17) u = xaF"(Pi, p2, ■ ■ ■, p.) + G(ph p2,---, p.) + pkXk.

Write (11) in the form

(18) - xk = xadFa/dpk + dG/dpk,

then due to (16) one may solve (18) for pk in terms of x. Then (17)

leads to a solution u(x) which is a degenerate solution of (1).

2. When s = 2, the case of double waves, there are n — 1 equations

and the same number of unknown functions Fa(pi, p2) and G(pi, pi),

a = 3, 4, • • • , n. The differential equations can be written in the

following form:

(19) ^Fn - 2BFan + CF22 = 0, a - 3, 4, • • ■   »,

(20) AGu - 2BGu + CG22 = 0,

where the subindices stand for differentiations with respect to pi and

p2. The coefficients are the same for all the equations:

A = a22 + 2a2fFi + aapFuFi,

(21) C = an + 2a1(SFf + aa<JF?Fi,

B •= an + (aigF2 + a2lFi) + aafFiFi.

Centered waves are those with G = 0. Since the coefficients in (21)

do not depend on G, for the study of double waves, one may restrict

oneself to centered ones.

For centered waves with s = n — l, there is only one unknown func-

tion F. Equation (14) is simply Qik — PikXa~2. We form the determi-

nant | Fik | of n — 1 rows and columns of the second derivatives of F.

It is seen that —Pik is the cofactor fik of Fik in that determinant.

Hence (15) becomes for the n— 1-tuple centered waves the following:

n-l

(22) zZ (aik + 2alnFk + annFFk)fik = 0.
I, k-l

An interesting example is given by L(u) = V2w(#i, x2, x3). The cor-

responding equation (22) is the differential equation of minimal sur-

faces. This fact is well-known, for other proofs see for instance [3,

pp. 44-46] and [5].

3. Let Si(t), 52(r),/a(r),/f(r) and^(r) be continuously differenti-

able functions of t, for O^t^ 1. It is assumed that
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(23) /" = f"si + fis2, a = 3, 4, • • •, »,

hold, where the dot stands for differentiation with respect to t. If we

replace Ft and Fk in (21) by ft and jf, and moreover, replace pi, p2

and pa in the argument of ay by si, s2 and fa respectively, then the

coefficients A, B and C become functions of r, to be denoted by

A, B and C. We assume that

(24) B2 - AC > 0,

and furthermore,

(25) A(s2)2 - 2B(si)(s2) + C(h)2 * 0.

Now, we consider the following two initial value problems. Prob-

lem I concerns system (19) for the unknown functions Fa(pu p2).

The initial curve in the (pi, p2) plane is given by

(26) V:pi = Si(t),       p2 = s2(r).

The initial values are

a a a a a

(27) F   =/,      F1=/1,       F2=f2.

To formulate problem II, which concerns equation (1) for the un-

known function u(x), we have to define the initial manifold Mn-i

in the x-space. One constructs first a one parametric family of hyper-

planes, each of n — 2 dimensions, by

(28) -E„_2(t): - xi = xafi(r),        - X2 = xafi(r).

The quadratic form

(29) j(t) = a£x + iEzit, + c£2

with £1 = xafai and £2 = xaf2, defines by J = 0, a pair of hyperplanes each

of dimensions n— 1. The intersection of En-i(r) with 7(r)=0 is of

the dimension n — 3, unless all/" and/2 are equal to zero, which case

we exclude. Hence we may form E'n_2 = En-2r\(J>Q) and E"-2

= En-if~\(J<0). The initial manifold M„-i is either the union of

E'n_2 or of E'n-i for O^t^I. The following values are assigned on

Mn-i:

U = 5iXj + 52*2 + xafa,
\0\3j

du/dXi = 5i(r), du/dXi = 52(r), du/dxa = /"(r).

Due to (23) and (28) the data are compatible. The first partial de-

rivatives of « are constant along each E„-* in Af„-i.
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Theorem 2. The solution of problem I, which exists uniquely in a

neighborhood of T, gives a solution of problem II in the neighborhood of

Mn-i- Conversely, let us assume that for the differential equation (1)

problem II has an unique solution w= U(x), which can be obtained ex-

plicitly. Then by the simple means of differentiation and elimination,

one can find from U(x) the solution of problem I.

Proof, (a) Since (19) is hyperbolic with respect to the data (27),

and since T is not tangent to the characteristics, it follows the exist-

ence of an unique solution of problem I, [3, p. 333 ]. In order to obtain

u(x) from Fa(pi, p2) by (17) and (18), we have to exclude from the

x-space those points for which the determinant (16): J* = (xaF"2)2

— (xaF^i)(xaF2\)7,i0. Now, the values of F£ along the initial curve T

can be calculated. One verifies, after some computations, that

J* = J(t) holds on T, with J(t) given in (29). By the definition of

Mn-i, it follows the first part of the theorem.

(b) Under the assumption of uniqueness, the solution U(x) must

be the same as that obtained through the solution of problem I, in

the neighborhood of Mn-i- By Theorem 1, the determinant

2 2 2 2   2 2

(d u/dxidx2)   — d u/dxid u/dx2 9^ 0

on Afn-i- We can therefore solve for Xi and x2 in terms of pi, p2 and xa,

by applying the theorem of implicit functions on pi=dU/dxi, p2

= dU/dx2. Replacing Xi and x2 in dU/dxa we obtain F".

The assumption made in the above theorem is satisfied, when the

coefficients ay are constants, L(u) is totally hyperbolic and the initial

manifold is "space like." By (28) one finds the normal directions on

Mn-i:

dXl    dX2 dXa -a -a -Ba -8 a

—-'■—'• ■ ■ ■ :T~:.= (**/*)'-(-x«fi): ■ ■ ■ '-(xsfifi- xsfif2): ■ • -.
dv     dv dv

One inserts these expressions into L = aijdxt/dvdxj/dv. By a simple

computation it is seen that L = J(r) of (29). Thus the initial mani-

fold is "space like," if J(r) has a definite sign.

To illustrate the theorem, we give briefly a simple example. Con-

sider the following nonlinear differential equation in two variables:

(a2-r-F22)F11-2FiF2Fi2+(-cs+F1)F22 = 0 for F(pi, p2) with the initial

values 1°. F(pu o)=0, F2(Pi, o)=/2(pi), and 2°. F(o, pi)=f(pi),

Fi(o, pi) =0. In both cases the solutions can be obtained by solving

the wave equation in three independent variables: a2uxx+uyy — c2uti

= 0. We assume that the given functions /2(pi) and df/dpt can be

solved implicitly by <j> and ^ so that <p(fi(pi)) =pi and ^/(df/dpi) =sp2.
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The initial data to be imposed on the wave equation are 1°. u(x, y, o)

= 0, ut(x, y, o) =<t>(-x/y), 2°. u(x, y, a) =y-f(f(-x/y))+x\l/(-x/y),
ut(x, y, o) =0. The initial manifold here is the plane t = 0. Ii the pro-

cedure of elimination among the first partial derivatives is difficult

to carry out, we have in the explicit formulas pi = ux(x, y, t), p2

— ut(x, y, t), p3 = uy(x, y, t) a parametric representation of the function

p3 = F(Pi,pt).
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