REAL LINEAR CHARACTERS OF THE SYMPLECTIC MODULAR GROUP

IRVING REINER

1. The symplectic modular group Γ_{2n} consists of all integral $2n \times 2n$ matrices \mathfrak{M} for which $\mathfrak{MFM}' = \mathfrak{F}$, where

$$\mathfrak{F} = \begin{pmatrix} 0 & I^{(n)} \\ -I^{(n)} & 0 \end{pmatrix}.$$

In order to determine all possible automorphisms of Γ_{2n} [1], it is necessary to find all real linear characters of Γ_{2n} , that is, all homomorphisms into $\{\pm 1\}$. In this note we prove that Γ_{2n} has no nontrivial real linear characters for n>2, while Γ_2 and Γ_4 each have exactly one nontrivial real linear character. We shall also determine Γ'_{2n} , the commutator subgroup of Γ_{2n} .

We define the symplectic direct sum $\mathfrak{M}_1 * \mathfrak{M}_2$ by

$$\mathfrak{M}_{1} * \mathfrak{M}_{2} = \begin{pmatrix} A_{1} & B_{1} \\ C_{1} & D_{1} \end{pmatrix} * \begin{pmatrix} A_{2} & B_{2} \\ C_{2} & D_{2} \end{pmatrix} = \begin{bmatrix} A_{1} & 0 & B_{1} & 0 \\ 0 & A_{2} & 0 & B_{2} \\ C_{1} & 0 & D_{1} & 0 \\ 0 & C_{2} & 0 & D_{2} \end{bmatrix}.$$

Set

$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \qquad T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \qquad V = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

and define²

$$U_0 = S \dotplus I^{(n-2)}, \qquad U_1 = V \dotplus I^{(n-2)}, \qquad U_2 = T \dotplus I^{(n-2)}.$$

Then [2] Γ_{2n} is generated by $\Re_i = U_i + U_i'^{-1}$ (i = 0, 2), $\mathfrak{T}_0 = T * I^{2(n-1)}$, $\mathfrak{S}_0 = S * I^{2(n-1)}$, and their conjugates. When n = 1, the \Re_i are superfluous. Next we remark that

(1)
$$\mathfrak{S}_0 \mathfrak{T}_0 = (ST) * I = (ST)^{-2} * I$$
,

(2)
$$\Re_0\Re_2 = U_3 \dotplus U_3'^{-1}$$
, where $U_3 = ST \dotplus I = (ST \dotplus I)^{-2}$,

$$\mathfrak{T}_0 = \mathfrak{R}_1 \mathfrak{R}_2 \cdot \mathfrak{R}_0 \mathfrak{T}_0 \mathfrak{R}_0^{-1} \mathfrak{T}_0^{-1} \cdot (\mathfrak{R}_1 \mathfrak{R}_2)^{-1} \cdot \mathfrak{S}_0 \mathfrak{R}_1 \cdot \mathfrak{R}_2 \cdot (\mathfrak{S}_0 \mathfrak{R}_1)^{-1}.$$

Presented to the Society, December 29, 1954 under the title *Characters of the symplectic modular group*; received by the editors November 13, 1954 and, in revised form, November 24, 1954.

¹ Numbers in brackets refer to the bibliography at the end of the paper.

² A + B denotes the direct sum of the matrices A and B.

Therefore if θ is any real linear character of Γ_{2n} , we must have

$$\theta(\Re_0) = \theta(\Re_2) = \theta(\Im_0) = \theta(\Im_0) = \pm 1.$$

On the other hand, let Ω_n be the unimodular group consisting of all integral $n \times n$ matrices with determinant ± 1 . Then for n > 2, Ω_n is its own commutator subgroup [3]. Hence for n > 2, U_0 is a product of commutators in Ω_n , and therefore \Re_0 is in the commutator subgroup of Γ_{2n} . Therefore $\theta(\Re_0) = +1$, so Γ_{2n} has no nontrivial real linear characters for n > 2.

Now we must prove that there exists a homomorphism of Γ_{2n} into $\{\pm 1\}$ which maps each generator \Re_0 , \Re_2 , \Im_0 , \Im_0 into -1, for the cases n=1 and n=2. This is already known for n=1 [3], but we give an independent proof here. Let H be the normal subgroup of Γ_{2n} consisting of all matrices $\equiv I^{(2n)} \pmod{2}$. Then it is known [4] that $\Gamma_{2n}/H\cong S_{3n}$ for n=1, 2, where S_k is the symmetric group on k symbols. Let π be the homomorphism mapping Γ_{2n} onto S_{3n} , and let A_{3n} be the alternating subgroup of S_{3n} . Then $\pi^{-1}(A_{3n})$ is a subgroup of index 2 of Γ_{2n} , n=1, 2. Therefore Γ_{2n} has a nontrivial real linear character for n=1, 2, and the previous discussion shows that it is unique, and maps each generator onto -1.

2. Now we consider Γ'_{2n} , and we begin with n=1, the most difficult case. The commutator subgroup of $\Gamma_2/\{\pm I\}$ is known [5], but we shall not use this earlier result. According to [6], $\Gamma_2=\{S, T\}$ has as defining relations

$$S^4 = TS^{-1}TS^{-1}TS = 1.$$

Then the sum of the exponents to which S (resp. T) occurs in any relation, must be of the form 4a-b (resp. 3b), where a and b are integers. For $X \in \Gamma_2$ let $\alpha_X = \text{sum}$ of the exponents to which S occurs, and let $\beta_X = \text{sum}$ of the exponents to which T occurs, when T is expressed as a power product of T and T. Then $T \in \Gamma_2$ implies that T are of the form

$$\alpha_X = 4a - b, \qquad \beta_X = 3b,$$

for integral a, b. On the other hand,

$$S^{4a-b}T^{3b} = S^{-b}T^{3b} \equiv (S^{-1}T^3)^b \pmod{\Gamma_2'},$$

and

$$S^{-1}T^3 = S^{-1}T \cdot ST^{-1}ST^{-1}S^{-1} \cdot T \in \Gamma_2'.$$

Hence $X \in \Gamma'_2$ if and only if (4) holds. Consequently $T^{12} \in \Gamma'_2$, $T^m \notin \Gamma'_2$ for $m = 1, \dots, 11$, and we have

$$\Gamma_2 = \bigcup_{m=0}^{11} T^m \Gamma_2'.$$

Thus³ $(\Gamma_2:\Gamma_2')=12$.

Next we show how Γ'_{2} may be defined by means of congruences. Let

$$H_m = \{X \in \Gamma_2 : X \equiv I \pmod{m}\}.$$

Then H_m is a normal subgroup of Γ_2 , and in particular Γ_2/H_3 is a group of order 24 consisting of all 2×2 matrices of determinant +1 with elements in GF(3). This group contains a normal subgroup $\{C, D\}$ [4] of index 3, where

$$C = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \qquad D = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}.$$

Hence the group K_3 consisting of all elements of Γ_2 congruent (mod 3) to a matrix in $\{C, D\}$ is a normal subgroup of Γ_2 of index 3. Therefore $\Gamma'_2 \subset K_3$.

Next we remark that Γ_2/H_4 is of order 48, and contains the normal subgroup $\{A, E, F\}$ of order 12 generated by

$$A = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}, \qquad E = \begin{pmatrix} -1 & 0 \\ 2 & -1 \end{pmatrix}, \qquad F = \begin{pmatrix} -1 & 2 \\ 0 & -1 \end{pmatrix}$$

taken mod 4. If K_4 is the set of all elements of Γ_2 congruent mod 4 to a matrix in $\{A, E, F\}$, then K_4 is a normal subgroup of Γ_2 of index 4. Therefore $\Gamma'_2 \subset K_4$. Since $K_4K_3 = \Gamma_2$, it follows at once that

$$(\Gamma_2:K_3\cap K_4)=12,$$

and so

$$\Gamma_2' = K_3 \cap K_4.4$$

3. We show next that $(\Gamma_4:\Gamma_4')=2$, and also we determine Γ_4' by means of congruences. From [3] we find that $\Re_0\Re_2$ and $\Re_2^2 \in \Gamma_4'$. Hence $L = \Gamma_4' \cup \Re_2\Gamma_4'$ is a normal subgroup of Γ_4 , and (using (3)) \Re_0 , \Re_2 , and \Im_0 are elements of L. Also we have

$$\mathfrak{S}_0\mathfrak{T}_0=\mathfrak{T}_0\mathfrak{S}_0\mathfrak{T}_0^{-1}\mathfrak{S}_0^{-1}(\mathfrak{S}_0\mathfrak{T}_0\mathfrak{S}_0^{-1})^2\mathfrak{T}_0^2,$$

so $\mathfrak{S}_0 \in L$. Hence $L = \Gamma_4$, and therefore either $\Gamma'_4 = \Gamma_4$ or $(\Gamma_4: \Gamma'_4) = 2$.

³ This result has been obtained independently by Professor J. L. Brenner.

⁴ The author wishes to acknowledge with thanks some helpful conversations with Professor E. V. Schenkman on the material in §2.

However we have already seen that Γ_4 contains a subgroup K of index 2. Since $\Gamma'_4 \subset K$, we then have $\Gamma'_4 = K$.

Finally we remark that the previous discussion shows easily that $\Gamma'_{2n} = \Gamma_{2n}$ for n > 2.

BIBLIOGRAPHY

- 1. I. Reiner, Automorphisms of the symplectic modular group, Trans. Amer. Math. Soc. vol. 80 (1955) pp. 35-50.
 - 2. L. K. Hua and I. Reiner, Trans. Amer. Math. Soc. vol. 65 (1949) pp. 415-426.
 - 3. ——, Trans. Amer. Math. Soc. vol. 71 (1951) pp. 331-348.
 - 4. L. E. Dickson, Linear groups, Teubner, 1901.
 - 5. H. Frasch, Math. Ann. vol. 108 (1933) pp. 229-252, especially p. 245, footnote.
- 6. J. Nielsen, Danske Videnskabernes Selskab. Matematisk-Fysiske Meddelelser vol. 5, no. 18 (1924) pp. 3-29.

Institute for Advanced Study and University of Illinois