
REAL LINEAR CHARACTERS OF THE
SYMPLECTIC MODULAR GROUP

IRVING REINER

1. The symplectic modular group T2n consists of all integral

2wX2w matrices 2tt for which 9Kr52H' = S?, where

/    0       7<»>\

g = V-7<«>     oj'

In order to determine all possible automorphisms of r2„ [l],1 it is

necessary to find all real linear characters of r2n, that is, all homo-

morphisms into { +1}. In this note we prove that r2„ has no non-

trivial real linear characters for w>2, while T2 and Tt each have

exactly one nontrivial real linear character. We shall also determine

T2„, the commutator subgroup of r2„.

We define the symplectic direct sum 3fli * W2 by

Ai   0     Bi   0

(Ai   BA     (Ai    B2\ 0      Ai   0      B2
9EW1*Sf«2 = ( ) »( ) =

\d   Dj    \C,    D2J        d    0     Di   0

.0     C2    0     D2

Set

5 = (-i  o)'      r"C  !)'      " = (i  o>
and define2

Uo = 5 + /("-2>,        Ui = V + 7<"-2>,        Ui = T + /<"-2>.

Then [2] T2„ is generated by 9t,= Ui+UI^1 (* = 0, 2), J0= T*P^~l\

©o = >S'*72(n_1), and their conjugates. When w = l, the 9?,- are super-

fluous. Next we remark that

(1) ©o£o = (ST) * I = (ST)-2 * I,

(2) 3WR2 = U, + Ui~\ where U, = ST + I = (ST + I)-\

(3) Zo = SRiSRi -SRoSoSRo-^S-1 • (SRiJRa)-1 • ©oSRi -»ti - (©^ti)-1-
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1 Numbers in brackets refer to the bibliography at the end of the paper.

1 A+B denotes the direct sum of the matrices A and B.
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Therefore if 6 is any real linear character of r2„, we must have

0(9i„) = edRi) = e(Zo) = 0(©o) = ± l.

On the other hand, let fl„ be the unimodular group consisting of

all integral raX« matrices with determinant ±1. Then for ra>2, Q„

is its own commutator subgroup [3]. Hence for ra>2, Uo is a product

of commutators in Q„, and therefore 8?0 is in the commutator subgroup

of r2n. Therefore 0(9?o) = +l, so T2n has no nontrivial real linear

characters for ra>2.

Now we must prove that there exists a homomorphism of r2„ into

{ ±l} which maps each generator 9t0, 9?2, £o, ©o into —1, for the

cases ra = 1 and ra = 2. This is already known for ra = 1 [3 ], but we give

an independent proof here. Let H be the normal subgroup of T2n

consisting of all matrices =:.£2n) (mod 2). Then it is known [4] that

T2„/H=Szn for ra = l, 2, where Sk is the symmetric group on k sym-

bols. Let tt be the homomorphism mapping r2n onto 53n, and let A3n

be the alternating subgroup of Szn. Then 7r_1(.43n) is a subgroup of

index 2 of r2„, ra = l, 2. Therefore T2„ has a nontrivial real linear

character for ra = l, 2, and the previous discussion shows that it is

unique, and maps each generator onto —1.

2. Now we consider T'2n, and we begin with ra = 1, the most difficult

case. The commutator subgroup of T2/{ +1} is known [5], but we

shall not use this earlier result. According to [6], r2={S, T} has

as defining relations

S4 = TS^TS^TS = 1.

Then the sum of the exponents to which 5 (resp. T) occurs in any re-

lation, must be of the form 4a —0 (resp. 3b), where a and 0 are in-

tegers. For XGT2 let ax = sum of the exponents to which S occurs,

and let /3x = sum of the exponents to which T occurs, when X is ex-

pressed as a power product of S and T. Then XGY{ implies that

ax, /3x are of the form

(4) ax = 4a - b,       fix = 36,

for integral a, 6. On the other hand,

s*a-bTit = s-bTu = (s-ir*)» (mod r2'),

and

S-it* = s^TST-^T-^^-T G T2'.

Hence XGT{ if and only if (4) holds. Consequently ri2er2', rm(£r2'

for m = l, • • • , 11, and we have
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11

r2= U rT2'.
m-0

Thus* (T* :1V) = 12.
Next we show how r2' may be defined by means of congruences.

Let

Hm = {X ET2:X = I (mod m)}.

Then 77m is a normal subgroup of r2, and in particular r2/773 is a

group of order 24 consisting of all 2X2 matrices of determinant +1

with elements in GF(3). This group contains a normal subgroup

{C, D}  [4] of index 3, where

Hence the group Kz consisting of all elements of T2 congruent (mod 3)

to a matrix in {C, D} is a normal subgroup of T2 of index 3. There-

fore T,' EKZ.

Next we remark that r2/774 is of order 48, and contains the normal

subgroup {A, E, F} oi order 12 generated by

taken mod 4. If Kt is the set of all elements of Tj congruent mod 4

to a matrix in [A, E, F}, then Kt is a normal subgroup of T2 of index

4. Therefore Ti EK*. Since KiKz = Tt, it follows at once that

(T,:KtriKA = 12,

and so

rs' =f,H AV

3. We show next that (r4:r4) =2, and also we determine r4 by

means of congruences. From [3] we find that 9?o% and S^Gr/.

Hence 7, = r4 U9?2r4 is a normal subgroup of T4, and (using (3)) 9t0,

9t2, and £0 are elements of L. Also we have

@o£o = So@oJo"1©o"1(©oSo©o"1)2So,

so @oEL. Hence Z = r4, and therefore either T4' =T4 or (JVT/) =2.

3 This result has been obtained independently by Professor J. L. Brenner.

* The author wishes to acknowledge with thanks some helpful conversations with

Professor E. V. Schenkman on the material in §2.
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However we have already seen that T4 contains a subgroup K of index

2. Since Ti CK, we then have T4' =K.

Finally we remark that the previous discussion shows easily that

r2„ = r2„forra>2.
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