REAL LINEAR CHARACTERS OF THE
SYMPLECTIC MODULAR GROUP

IRVING REINER

1. The symplectic modular group I':, consists of all integral
21 X 2n matrices I for which MFIM’ =, where

0 I
§ = (_ T o)

In order to determine all possible automorphisms of Ty, [1],! it is
necessary to find all real linear characters of I'y,, that is, all homo-
morphisms into { £1}. In this note we prove that Iz, has no non-
trivial real linear characters for »>2, while Ty and I'y each have
exactly one nontrivial real linear character. We shall also determine
I'5,, the commutator subgroup of I'y,.

We define the symplectic direct sum I « M, by

A4, 0 B; O
9)?1*9ﬁz=<A1 B1>*(A2 Bz)= 0 A4, 0 B,
C: D C: D, C; 0 D, O
0 Cy, 0 D,
Set

0 1 1 1 0 1
s=(Li o) TG ) (o)
-1 0 0 1 1 0

and define?

Uy=S+I02, U=V 410  Upy=T+ I,

Then [2] Ty, is generated by R;= U;+U! -1 (=0, 2), To=T » [2™D,
S¢=S*I*""1 and their conjugates. When n=1, the R; are super-
fluous. Next we remark that

(1) @ozo= (ST)*I= (ST)'Z*I,

(2 RoRy = Us + U4, where Us = ST + I = (ST + 1),

3) Lo = PRz RoToR 1T RR2) ™1 SeRr- R+ (SR
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! Numbers in brackets refer to the bibliography at the end of the paper.

1 A+ B denotes the direct sum of the matrices A and B.
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Therefore if 8 is any real linear character of I';,, we must have
(o) = 6(R2) = 0(To) = 0(S0) = £ 1.

On the other hand, let ©, be the unimodular group consisting of
all integral # Xn matrices with determinant +1. Then for n>2, Q,
is its own commutator subgroup [3]. Hence for n>2, U, is a product
of commutators in ., and therefore R, is in the commutator subgroup
of I';,. Therefore 6(Ro) =41, so I's, has no nontrivial real linear
characters for n>2.

Now we must prove that there exists a homomorphism of Iy, into
{ £1} which maps each generator R, R, To, So into —1, for the
cases n=1 and n=2. This is already known for n=1 [3], but we give
an independent proof here. Let H be the normal subgroup of I's,
consisting of all matrices =1 (mod 2). Then it is known [4] that
Ty./H=S;, for n=1, 2, where S; is the symmetric group on & sym-
bols. Let 7 be the homomorphism mapping I's, onto S;., and let A;,
be the alternating subgroup of S;.. Then #~1(43;,) is a subgroup of
index 2 of I'y,, n=1, 2. Therefore I';, has a nontrivial real linear
character for n=1, 2, and the previous discussion shows that it is
unique, and maps each generator onto —1.

2. Now we consider I'j,, and we begin with #» =1, the most difficult
case. The commutator subgroup of Pz/{ iI} is known [5], but we
shall not use this earlier result. According to [6], To={S, T} has
as defining relations

St = ITS\TSTS = 1.

Then the sum of the exponents to which S (resp. T') occurs in any re-
lation, must be of the form 4a—b (resp. 3b), where a¢ and b are in-
tegers. For X &T, let ax=sum of the exponents to which .S occurs,
and let 8x =sum of the exponents to which T occurs, when X is ex-
pressed as a power product of S and T. Then XE&TI'y implies that
ax, Bx are of the form

(4) ax = 4a — b, 3x = 3b,
for integral a, . On the other hand,
SM—bTSb = S—szb = (S—lTa)b (mod 1‘2'),
and
S-IT% = S-1T- ST ST-SV.TETy.

Hence X €T if and only if (4) holds. Consequently Ty, T& Ty
for m=1, - - -, 11, and we have
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11
T, = U T=TJ.
M0
Thus?® (I'2:T7) =12.
Next we show how I'/ may be defined by means of congruences.
Let

Hn={XETy:X=1I(modm)}.

Then H, is a normal subgroup of T's, and in particular I';/H; is a
group of order 24 consisting of all 2 X2 matrices of determinant +1
with elements in GF(3). This group contains a normal subgroup
{C, D} [4] of index 3, where

(1) 0-( )

Hence the group K; consisting of all elements of I'; congruent (mod 3)
to a matrix in {C, D} is a normal subgroup of T'; of index 3. There-
fore I'{ CK;.

Next we remark that I';/H| is of order 48, and contains the normal
subgroup {4, E, F} of order 12 generated by

-1 1 -1 0 -1 2
e S B P B S
-1 0 2 —1 0 -1
taken mod 4. If K, is the set of all elements of T'; congruent mod 4

to a matrix in {4, E, F}, then K, is a normal subgroup of I'; of index
4. Therefore I'Y CK,. Since K K3=T,, it follows at once that

(Pz:Kam K;) = 12,
and so
Iy = KsMN Kyt

3. We show next that (I'y:I'/) =2, and also we determine I'{ by
means of congruences. From [3] we find that R,R: and RECT.
Hence L=T/\UR,I'{ is a normal subgroup of I', and (using (3)) R,
R, and T, are elements of L. Also we have

ST = TS, Gs (GeTiSs ) T,
so &y& L. Hence L=T, and therefore either I'{ =T'; or (I'y:T'{) =2.

3 This result has been obtained independently by Professor J. L. Brenner.
¢ The author wishes to acknowledge with thanks some helpful conversations with
Professor E. V. Schenkman on the material in §2.
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However we have already seen that I'y contains a subgroup K of index
2. Since I'{ CK, we then have I'{ =K.
Finally we remark that the previous discussion shows easily that
T}, =Ty, for n>2.
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