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Introduction. In [9], we consider a square matrix A= (ay) with

real or complex elements satisfying the inequalities

(l) sj= J2 1**1 =1        0'- 1,2, •••,»).
>-i

Then 7—A is nonsingular if

(b-l

(2) I an I   < 1, I fl*» I  + E 5,-1 aa I   < 1 (ft > 1).
i-l

With property (1), condition (2) is implied by

(3) E |«,|   < 1 (j = 1,2, -■■ ,n).
t-i

In [10], we show that if y4 is non-negative and satisfies (1), then

properties (2) and (3) are equivalent, and either property (2) or (3)

is a necessary and sufficient condition for the maximal proper value

to be less than unity. In this paper, we study some properties of the

proper values of a matrix without condition (1). Without assuming

(1), property (3) is necessary but not sufficient for a maximal proper

value of a non-negative matrix to be less than 1. With condition (1),

property (2) is a sufficient condition but not necessary for a real- or

complex-valued matrix to have a maximal proper value less than

unity in modulus. In §3, we give some equivalent conditions for all

the proper values of a non-negative matrix A to be less than unity in

modulus. Property (v) in §3 shows that akk+ck<l (see (3.4) and

(3.5) below) is an equivalent condition for all the proper values to lie

within a unit circle. This property is analogous to property (2) above.

Another equivalent property is stated as follows: there exists a

principal submatrix Alp-i-, and a positive vector w (both) of order

» —1 such that w'A (p_d < w' and det(7—^4)>0.

1. Moduli of finite matrices. The modulus of a finite matrix A with

real or complex elements is a finite real-valued function, ||.4||, satisfy-

ing the following axioms:
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(I) \\sA | = |s| -|m| for every number 5.
(II) ||/| =1, independent of the order of /.

(III)l|;iB||s||ii||.||B||.
(W)\\A+B\\^\\A\\+\\b\\.
(V) For every submatrix E of an identity matrix /, ||£|| ^||/||.

(VI) If lim AP = A, then limp\\A -Ap\\ =0.
(VII) If A, B are two non-negative matrices, then ||.4-f-P||

£max (||ii||, ||B||).

The first five axioms give the properties of "norms" in Banach

algebras. Axiom (VI) is valid only for finite matrices. The assumption

of non-negativeness in (VII) is essential. For if A and B are real or

complex valued and B = —A 5*0, then (VII) is not valid. Axiom (V)

is equivalent to (Vo): The modulus of a matrix is not less than the

modulus of any one of its submatrices. Axiom (VII) may be replaced

by the following statement: (VII0) Let the matrices A and B be non-

negative such that A^B (i.e. each element of A is at least equal to

the corresponding element of B); then ||.4|| ^||P||.

The following lemma depends on only (I), (II), (III), and (VI).

Lemma l.2 The modulus of a maximum proper value of a finite

square matrix A with real or complex elements is equal to limj,||.4p||1/p.

Proof. The limit stated in the lemma exists and is finite. For, let

ap = log \\A"\\. Then (II) shows that a0 = 0 and (III) shows that
ap+9^ap-T-ag. Polya and Szego [5, p. 171, Problem 98] show that

lim (aP/p)=inf (aP/p) = b ̂  — 00. Then exp (6)^||.rl||, proving that

the limit is finite.

Let Xi be a proper value with maximum modulus. Then \\x = Avx,

where x is not a zero vector. We may assume that ||x|| =1. Hence by

(I) and (III), we have |Xi| p^||/lp||, and hence |X,| ^m»|l1/p-
Let r = lim ||^4p||1/p. We shall show that |Xi| cannot be less than r.

If |Xi| <r, let 5 be such that |Xi| <s<r. Then the Carl Neumann's

series R(s, -4)=s_1^r s~pAp converges. It follows that s~vAv con-

verges to zero as p tends to infinity. By the continuity property of

the modulus function (see Axiom (VI)), for sufficiently large p,

||s-p4p|| <1, and hence ||.4p||1/p<s for sufficiently large p. This result

is absurd, ass<f.

For future development, we mention two instances. Consider real-

or complex-valued matrices and vectors. Let A* denote the con-

jugate-transpose of A with m rows and ra columns. Thus x*x gives a

non-negative number. We introduce

1 A generalized result in terms of spectral norm in Banach algebra is known.
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(i.i) IMIi = IMIi = (eUI*) ;

(1.2) ||x*||2 = max (| xx| , •  •   •, |xm|),        ||x||2 = 2~L I x< I •
t

Define for v = l, 2,

(1.3) PU, = sup { I x*Ay\\ \\x*\\, = \\y\\, = l}.

Then

(1.4) NIx-IMiu        \\A*A\\i = \\AA*\\i = m||i = A,
where X is a maximum proper value of A* A. See [4, pp. 1042-1044];

(1.5) \\a\\2 = max* < 2~2 I **| ( ■

Let us prove (1.5). We can verify that

(1.6) \x*Ay\   g||**||i|M||i||y||i-N|.

if the moduli of x* and y are equal to 1. On the other hand, suppose

that the rth column gives the maximum value. Let a> De the con-

jugate of ajr. Take x* = (ajr/|ayr| \j = l, • • ■ , m), and y = 8r, the rth

column of the identity matrix of order n. Then ||x*||2 = ||y||2 = l and

|x*^4y| = 2~li laJ>|, which together with (1.6) gives (1.5).
One can verify that (1.4) or (1.5) satisfies Axioms (I) to (VII). To

prove the continuity property (VI) of ||^4||i, we make use of ||-d||i

= (2>.y |fl»y|2)1/2. If A consists of non-negative numbers, then x, y

may be restricted to be non-negative in (1.3) without altering the

modulus of A. This fact is used to prove (VII). The results in §1

hold for real quaternions.

2. Finite square matrices and their proper values. In the sequel, we

shall let Xi be a proper value of A with maximum modulus.

Theorem 1. Let A = (a„) be a finite square matrix of order n with

non-negative elements. If Xi < 1, then by permutations of rows and

columns, A has the property
k

(2.1) Z**<L ft=» 1, 2, ••• ,».
t-i

A similar property holds for the rows of A.

Proof. Let 5*= XXi aik for ft = 1, 2, • • • , n. The minimum of all

5* is less than 1. For, if mint (5*) 2:1, then Xi^l. Thus Xi<l implies

that there exists at least one column-sum, say sn, less than unity.

From Axiom (VII) or (VIIo), one can deduce that if B is a non-
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negative matrix whose elements are not greater than the correspond-

ing ones of A, then (by Lemma 1), the maximum proper value of B

is not greater than that of A. Hence, the maximum proper value of

any principal submatrix of A is not greater than that of A. Let At be

the principal submatrix consisting of the first k rows and columns of

A. Then there exists in Ak a column-sum less than unity. Let such a

column be the £th one. This proves (2.1).

Note that condition (2.1) is not sufficient for Xi<l as counter-

examples show. Property (2.1) is not valid if we merely assume A

to be real-valued, for, in our proof, Axiom (VII) is used.

If we assume that all Sk are at most unity, then (2.1) is sufficient

for Xi<l. But this condition is even valid for real or complex valued

matrices.

Theorem 2. Let A be a finite square matrix of order ra with real or

complex elements such that sk = zZt-i I a*| =1 for a^ k. Then

(2.2) zZ 1**1   < 1. *- 1,2, •••,»,

implies
n

(2.3) | akk\ +   zZ   si\ aik\   < If    k = I, ■ ■ ■ , n — 1; \ a„n\ <l.
i-h+l

Property  (2.3)  implies the existence of an integer p^n such that

\\AP\\i<l.

\\A\\s is defined by (1.5). The ith row andjth column of A are de-

noted by A (i, ■) and A (■, j) respectively. A (i, j) and a.y have the

same meaning.

Proof. We can see easily that (2.2) implies (2.3). By (2.3), we

have||i4(-, l)||j<l. Let c, = ||^49(-,j)||2, where 0<g<ra. Suppose that

e,<l for r = l, 2, • • • , q. Then for k = l, 2, • • • , q,

(2.3a) |M'+1(-, ft)||i ̂  IMIMM'O, *)H* = lCk < l-

Let k=q+l or larger; then

ZZ\A'+I(i,k)\ =JZ \A'iir)Ai-,k)\
t-i «=i

*±(±\A«(i,j)\-\A(j,k)\)
(2.4) t'_i \ i-l /

=   ZZ Cr | <*r* |    +  ZZ C< I ffl«* I •
r-1 «>«
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Now we have two cases, (i) aVt= - - ■ =aqk = 0; then the preceding

expression is
n

=   2~2 Ci I atk |   ^   X) st | atk \  + \ aq+i,k \   < 1.
1>9 '-9+2

(ii) OrtT^O for some r( = l, • • • , q); as cr<l the last expression in

(2.4) is

9 n

<   53 I a,k | + 2 c« | an |   ̂  53 I ** I   ■" ** ̂ !•
l—l <>9 t—1

In either case, we have ||.4«+1(-, ft)||i<l for k = q+l at least. Thus

our theorem is proved.

The important fact is the smallness of the integer p. If conditions

5* ̂  1 for all ft and (2.3) are not assumed, then the integer p is usually

very large, unless A is nilpotent. The preceding theorem is valid for

real quaternions.

Lemma 2. If there exist an integer p and a non-negative number c such

that \\Ap\\ ±Sc<1, then lim(,m8||I/«<l and conversely.

The lemma is well known in Banach algebras. (See the proof of

Lemma 1.)

Corollary 1. If condition (2.2) or (2.3) is satisfied, then |Xi| <1.

Lemma 3. Let A be real- or complex-valued and indecomposable such

that sk^lfor k>l and Si<l. Then condition (2.2) holds, subject to the
permutations of rows and columns.

Proof. Condition (2.2) is satisfied for ft = l. Let ft = 2, •••,«.
Consider the submatrix (apq) for p = l, • • • , k — 1, q = k, • ■ • , ». The

indecomposability shows that there is at least one element different

from zero. If one of the elements an, am, - - - , a*_i,* is different from

zero, then
n

£ I ** I <s„£i.
i—k

If any other element is different from zero, we make the necessary

interchange of rows and columns to achieve the desired result.

(Lemma 3 holds also for real quaternions.)

By Lemma 3 and Corollary 1, we get the following result of A. T.
Brauer [l, pp. 876-877].

Corollary 2. Let A have the properties in the hypothesis of Lemma

3. Then all the proper values of A are less than 1 in modulus.
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3. Non-negative matrices. In this section we give some equivalent

conditions for Xi<l. Not all the conditions are new; for example,

(i) is due to Frobenius [2] and (ii) is due to Carl Neumann [3].

However, our proof is elementary and simple. We shall assume A to

be non-negative-valued.

Lemma 4. If (I—A)-1 exists and has non-negative values, then

dkk < 1 for all k, and the diagonal elements of (I —A)-1 are at least equal

to unity}

Proof. Let (r<y), i,j=l, • ■ ■ , ra, be the inverse of I — A. The inner

product of the &th row of (r#) and the &th column otl — A gives

(3.1) rkk(l - akk) - zZ rkhahk = 1.
hjtk

If 1—akk^O, the left-hand side of (3.1) would be nonpositive, which

is impossible. Thus 1— 0*4 >0. From (3.1), it follows that r**(l— a**)

^ 1. As 0 < 1 — akk ̂  1, we have rkk ̂  1 ■

The following properties are mutually equivalent.

(i) The inverse of I —A exists and has non-negative values.

(ii) The series I+A +A 2+ ■ ■ -converges.

(iii) Every principal submatrix B of A has the property that the

inverse of / — B exists and is non-negative.

Before stating property (iv), we adopt some notations. For p rang-

ing from 1 to ra, let Ap be the principal submatrix consisting of the

elements in the first p rows and columns of A; A-p the principal sub-

matrix of order n—p omitting all the elements in the first p rows

and columns; C = (air), D = (a„) with i, j = l, ■ ■ ■ , p and r, s=p+1,

• • • , ra. We express I —A in the form

».*i-A.(L -")-( ' yL 0)C -L_,c)

\-D     Mj      \-DL-1   7/Vo   kJ\0 I     )

where L = I — AP, M = I — A^P, and

(3.3) Kp = I - A-p-D(I - AP)-^C.

(iv) For each p = 1, • • ■ , ra — 1, the inverses of / — A p and Kp exist

and are non-negative.

(v) For each p = 1, 2, • • • , n— 1, the inverse of I-Ap exists and is

non-negative, and for k = l, 2, ■ ■ ■ , w,

(3.4) ck < 1 — akk,

where

3 A related result was obtained by J. H. Curtiss in "Monte Carlo" methods for the

iteration of linear operators, Journal of Mathematics and Physics vol. 32 (1954) p. 224.
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t-l

(3.5) ci = 0,        ck = 2~1 akr(I ~ Ak-i)~1(r,s)a,k.
r,»=l

Similar results hold for every permutation on 1, • • • , n.

(vi) There exists a sequence of principal submatrices Aip-,, p

= 1, ■ • •, n, such that (1) A(p) of order p is a principal submatrix of

AiP+i), and (2) dp+i^dp where dp = det (I—Aip)). Moreover, d„>0.

(vii) There exists a sequence of principal submatrices A(p),

p = l, • • ■ , n, such that (1) A(p) of order p is a principal submatrix of

A(P+ih and (2) det (7 —^4(p))>0 ior p = l, - ■ ■ , n.

(viii) To each vector y with non-negative components, the equa-

tion x'(I — A)=y' has a solution such that x^y. Moreover, if yk>0

ior some ft, then x*>0.

(ix) A vector z with positive components exists such that z'A <z'.

(x) The maximum proper value Xi of A is less than unity.

Proof. We shall show that the first seven properties imply each

other in cyclic order, (i) implies (ii): By Lemma 4, we write (7 — A)~l

= 7+^1*; then A* has non-negative values and commutes with A.

For m ^ 1,

A* = A + A2 + ■ ■ ■ + Am + A"A*.

Let Sm = I+A+ ■ ■ • +Am. Then Sm^Sm+i and every element of Sm

is bounded above by the corresponding element of (I — A)*1. Hence

limm Sm exists and is the inverse of I —A. That (ii) implies (iii) is

obvious, (iii) implies (iv): From (iii), it follows that the inverse of

I — Ap exists and is non-negative. That the inverse of Kp exists and is

non-negative follows from (3.2) and (iii). (iv) implies (v): Let 7, = 7

— Ap iorp = l, 2, • • • , n — 1 in (3.2). Then (iv) states that the inverse

of 7 — Ap exists and is non-negative. Obviously (3.4) holds for ft = l.

Let p = 2, ■ ■ ■ , n, and apply (3.2) to I—Ap with L = I—Ap-X. Then
Kp becomes 1 — app — cp. Since the inverse of I —A P exists and is non-

negative, it follows that 1 — aPP — Cpt^O and is non-negative, i.e. posi-

tive, (v) implies (vi): Let AM =AP as specified above. Then property

(1) in (vi) is satisfied. We can show [8, p. 234] that for p = 2, • • • , n,

dp = dp_i(l—app — Cp), which by (v), proves property (2) in (vi) and

also dn > 0. That (vi) implies (vii) is evident, (vii) implies (i): Since

dn>0, the inverse of 7—.4 exists. To prove the non-negativeness of

(I — A)*1, we reduce I—A into a diagonal matrix by a method similar

to (3.2). Let ei=di, ep = dp/dp-i ior p>l. By hypothesis, ei, • ■ ■ , e„

are positive. Put Bi=A. From the non-negative matrix Bp of order

n—p+1 such that the first element in the diagonal of I—Bp is ep,

we construct Bp+i of order n—p by the method of (3.2) as follows:

Let B°v be the principal submatrix of Bv with the first row and
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column omitted; fip and a'p be the first column and row respectively

of Bp with the first element omitted. Define Bp+i=Bp+fiPeP1a'v.

Then Bp+i is non-negative, and

/-*,-( ' -.*)(*    °   V1 -';'4)-
\-fiPeP  I) \0   / - B„J \0        I    )

By the elementary properties of determinants, the first element in

the diagonal of I — Bp+i is ep+i. Thus, /—A = (/—P)E(I—Q), whereE

is a diagonal matrix with ei, ■ • • , en in its diagonal, P and Q have

non-negative elements respectively below and above the principal

diagonal, and zeros elsewhere. Hence (/ — A)~1 = iI+Q)E~liI+P),

which is non-negative. This completes the proof that the first 7

properties are equivalent to one another.

To complete the proof, we shall show that (i), (viii), (ix), (x), and

(iii) imply one another in that order. That (i) implies (viii) follows

from Lemma 4. (viii) implies (ix): For a positive y, we have, from

(viii), a positive u such that «' — u'A =y'>0. (ix) implies (x): If A

is nilpotent, then Xi = 0<l. If A is not nilpotent, by Frobenius' re-

sult [2], Xi>0 and Av=\iv where v is non-negative. Hence \iu'v

— u'Av<u'v. Since u'v>0, we have property (x). That property

(x) implies (iii) is a well known result concerning the Carl Neumann's

series [7, pp. 18-19].

Note that the weak condition (vii) implies that all the principal

minors of I—A are positive. The following equivalent condition is

useful in practical applications:

Corollary. The maximal proper value Xi of A is less than 1 if and

only if there exist a principal submatrix A (n_D and a positive vector w

(both) of order ra —1 such that w'Ain-i)<w' and det (/ —^4) >0.

Added in the proof. There is redundance in (v). The property given

by (3.4) and (3.5) implies the existence of non-negative inverses of

I—AP for all p. The proof is by induction. See the demonstration for

which (vii) implies (i).

References

1. A. T. Brauer, Limits for the characteristic roots of a matrix, III, Duke Math.

J. vol. 15 (1948) pp. 871-877.
2. G. Frobenius, Uber Matrizen aus nicht-negaliven Elementen, K. Preuss. Akad.

Sitzungsber. (1912) pp. 456-477.
3. C. Neumann,   Untersuchungen iiber das logarithmische und Newtonsche Po-

tential, Leipzig, Teubner, 1877, XVI, p. 368.
4. J. von Neumann and H. Goldstine, Inverting matrices of higher order, Bull.

Amer. Math. Soc. vol. 53 (1947) pp. 1021-1099.



1955I PROJECTIONS IN THE SPACE (m) 899

5. G. P61ya and G. Szego, Aufgaben und Lehrstttze aus der Analysis, I, Berlin,

Springer, 1925.
6. G. B. Price, Bounds for determinants with dominant principal diagonal, Proc.

Amer. Math. Soc. vol. 2 (1951) pp. 497-502.
7. A. Wintner, Spektraltheorie der unendlichen Matrizen, von S. Hirzel, 1929.

8. Y. K. Wong, Some inequalities of determinants of Minkowski type, Duke Math.

J. vol. 19 (1952) pp. 231-241.
9. -, An inequality for Minkowski matrices, Proc. Amer. Math. Soc. vol. 4

(1953) pp. 139-141.
10. -, On nonnegative valued matrices, Proc. Nat. Acad. Sci. U.S.A. vol. 40

(1954) pp. 121-124.
11. J. H. Curtiss, "Monte Carlo" methods for the iteration of linear operators,

Journal of Mathematics and Physics vol. 32 (1954) pp. 209-232.

Princeton University

PROJECTIONS IN THE SPACE (m)1

ROBERT C. JAMES

A projection in a Banach space is a continuous linear mapping P

of the space into itself which is such that P2=P. Two closed linear

manifolds M and N oi a Banach space B are said to be complementary

if each z of B is uniquely representable as x+y, where x is in M and y

in N. This is equivalent to the existence of a projection for which M

and N are the range and null space [7, p. 138]. It is therefore also

true that closed linear subsets M and N oi B are complementary if

and only if the linear span of M and N is dense in B and there is a

number «>0 such that ||x-|-y|| ^e||x|| if x is in Mand y in N.

It is known that a Banach space M is complemented in each

Banach space in which it can be embedded if it is isomorphic with a

complemented subspace of the space (m) of bounded sequences. In

particular, if Af is a subspace of a Banach space Z and is isometric

with a subspace M' oi (m), then there is a projection of Z onto M

oi norm less than or equal to X if there is a projection of (m) onto M'

of norm equal to X (see [8, p. 538] and [9, p. 945 ]). Thus the existence

of a complement in (m) ior a subspace M of (m) is independent of the

method by which M is embedded in (m). Any separable Banach space

is isometric with a subspace of (m) [3, p. 107]. Hence a separable

Banach space is complemented in each space in which it can be em-
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