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1. Introduction. In the theory of groups, the product ab~l occurs

frequently in connection with the definition of subgroups and cosets.

This suggests that the entire theory of groups might have been pre-

sented using the inverse operation aft-1, rather than aft. A neat formu-

lation of the group postulates in terms of the inverse operation for

arbitrary groups is not obvious, and thus the system of postulates

(for non-abelian groups) proposed, for example, by [l], actually first

defines addition in terms of subtraction and restates the group

axioms (in particular, associativity) in terms of subtraction. The ob-

ject of this paper is to present a system of postulates for the inverse

operation which is actually more concise than the usual formulation

in terms of ordinary multiplication. We shall also study systems

which are suggested by these axioms in the same way as semigroups

are derived from the group axioms. It turns out that while very little

can be said about an arbitrary semigroup, it is possible to determine

completely the structure of the analogous system which we call a

"half-group."

2. The group postulates. We consider a system G in which an

operation a o ft is defined satisfying the following set of postulates:

(1) a o bEG for any a, bEG.

(2) (a o c) o (ft o c) =a o ft for any a, ft, c EG.

(3) a o G = G ior any aEG.

We note, first of all, that in a system satisfying (1) and (2), (3) implies

the following two axioms:

(3a) There exists an eEG satisfying a o a = e for all aEG.

(3b) a o e=a.

To show this, let e=a o a for some a. By (3), x = a o x' for any x and

some appropriate x', so that x o x = (a o x') o (ao x')=ao a=e by

(2). Moreover x o e = (a o x') o (x' o x')=a o x'=x which proves

(3b). We can now prove the following ttfEorem:

Theorem 1. Any system G satisfying (1), (2), and (3) is a group
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under the operation ab = a o (e o b), and for multiplication defined in

this way, a o b=ab~x.

Proof. We may assume that G satisfies (1), (2), (3a), (3b). We

notice first of all that eo(eoa) = (ooo)o(eoa)=ooe=o. Therefore e

acts as the identity, for, ae=a o (« o e) =a o e=a, and ea = e o (e o a)

= a. Define a-1 = e o a. Then aa~l=aie o a) =a o [e o (e o a)] =a o a

= e, and a~la = (e o a) o (e o a) =e. It is now necessary only to prove

associativity for this system. To do this we consider the product

[a o ie o b) ] o { [e o (o o c~l) ] o [(g o c~l) o (o o c_l) ]}. This equals,

on the one hand, [a o (e o o) ] o [e o ie o c_1) ] = [a o (e o 6) ] o c_1

= iab) o ie o c) = iab)c. It also equals [a o (e o 6) ] o {[e o (6 o c~l) ]

o (e o 6)} =a o [e o (6 o c~1)]=aib o c_1)=a(6 o (e o c))=a(6c)

which establishes associativity. It is clear that ao-1 = ao (e o J-1)

=a o [e o ie o b)]=a o b which completes the proof.

We observe that the assumptions of closure, associativity, and the

solvability of ax = b in a system, which correspond to our postulates

(1), (2), and (3), do not suffice to make it a group. This lies in the

strength of postulate (2) as we shall see later. We first state

Theorem 2. Let G be a group satisfying, in addition:

(4) (c o b) o (c o a) =a o b for all a, 6, cGG; then G is abeliat,.

Proof. This is clear since ao = a o (e o o) = [e o (e o 6) ] o (e o a)

= 6 o (e o a) =ba. We note in passing that (4) together with (2)

imply (3a), for a o a = (a o b) o (a o b) = b o b. We require for later

use the fact that if G satisfies (1), (2), and (3) it is a group and there-

fore also satisfies Go a = G.

Theorem 3. Let G satisfy (1), (2), and (3a). If furthermore G o G

= G, that is, every element of G is a product, then G is a group.

Proof. We shall prove (3b) holds in such a system. Any xGG

can be written

x = xi o xj = (xi o xj) o (xj o xj) = x o e

which proves the theorem.

3. The half-group. A half-group is defined as a system G obeying

(1) and (2). The object of the remainder of this paper will be to deter-

mine the structure of such a system. Our first problem is to show that

the notions of cosets and factor groups can be extended to arbitrary

half-groups. An element x is said to be "idempotent" if x o x =x. Any

element of the form a o a is idempotent since (a o a) o (a o a) = a o a.

A "sub-half-group" SCG is a subset closed under ao b and which
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contains all the idempotent elements of G. An "invariant" sub-half-

group is one satisfying ao(ao5)C5 for all aEG. We can define

cosets with respect to any sub-half-group S by using the congruence

relation: a=.ft if a o ft£S. We shall show that this is actually an

equivalence relation:

(a) a=a since a o aES.

(b) a = b implies b = a since ft o a = (ft o ft) o (a o b)ES.

(c) a = b and b = c imply a o bES and c o bES whence (a o ft)

o (c o b)ES and a o cES and a = c.

If 5 is invariant in G, then we can define a multiplication of the

cosets as a* o b* = (a o ft)* (where x* represents the coset to which

x belongs). It is necessary to show that if a = a', ft = ft' then (a o ft)

= (a'oft'). Now a'o aES implies (a'o b) o (a o b)ES or a' o b

ma o ft. Also ft' o bES implies (a' o ft) o [(a' o 6) o (ft' oJ)]£5 by

the in variance of S, whence (a' o ft) o (a' o b')ES and a' o b=a' o ft'.

We therefore have a o b = a' o ft'. The set of cosets then has an opera-

tion a* o ft* defined on it and we may speak of the system {G/S, o }.

Theorem 4. G/S is a half-group satisfying (3a).

Proof. (1) is obviously true for G/S. Also (a* o c*) o (ft* o c*)

= (a o c) * o (ft o c) * = [(a o c) o (ft o c) ] * = (a o ft) * = a* o ft* which

proves (2). Moreover a*oa* = (aoa)* which is the unique coset

containing S. This proves the theorem. It might be mentioned that

if G o G = G then G/S is a group as follows from Theorem 3.

4. Equivalent extensions and retractions. We now define an

equivalence relation (~) in a half-group, G. Let a~b if there exists

an xEG such that a o x = ft o x.

Theorem 5. a<~& implies a o y = b o y and y o a=y o ft for all

yEG.

Proof, a o y = (a o x) o (y o x) = (ft o x) o (y o x) = 6 o y; y o a

— (y ° y) ° (a o y) — (y o y) o (ft o y) =y o ft. Q.E.D.

Theorem 6. a~ft is an equivalence relation.

Proof. Reflexitivity and symmetry are obvious. Also a~b and

b~c imply aox = ftox = coxby Theorem 5 so that a~c. Q.E.D.

Theorem 7. a~ft and ai~fti imply a o ai = ft o fti.

Proof, a o yi = ft o ai = ft o fti by Theorem 5. Q.E.D.
It is clear that given a half-group G, we can obtain a larger half-

group S by arbitrarily adjoining elements to G and assigning to each

xEG — G an element xEG and agreeing that x multiplied by any
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member of G should yield the same result as x multiplied by that

element. (The product x o y for both x, yGG—G would also be de-

fined as x o y = x o y.) If (2) held for G it must still hold for G. In

other words, if G is obtained from G by arbitrarily adjoining "equiva-

lent" elements, then G is still a half-group. We shall call G an "equiva-

lent extension" of G. In a similar manner we obtain an "equivalent

retraction" of G by identifying equivalent elements of G and denoting

them by one element. More precisely, G is an equivalent retraction

of G if there exists a single-valued function / from G onto G, preserv-

ing multiplication and such that /(x) =/(y) only if x~y. It is clear

that if G is a half-group then G is also one. For \fia) o fie) ] o [/(o)

o /(c) ] = [f(o o c) ] o \f(b o c) ] =/[(a o c) o (6 o c) ] =/(a o o) =/(a)

o/(6).

Theorem 8. Every half-group G is the equivalent extension of a sub-

half group G' for which G' o G' = G'.

Proof. Let G' = GoG. G' is a sub-half-group since it is closed

under multiplication and contains the idempotent elements. xGG'

implies x = Xi o x2 for Xi, x2£G or x = (xi o r) o (x2 o r) for an arbi-

trary r so that xGG' o G' whence G' = G' o G'. Now let xGG and a

be any element of G'. Then a = ai o a2 so that x o a = x o (ai o a2)

= [x o (a2 o a2) ] o [(ai o a2) o (a2 o a2) ] = [x o (a2 o a2) ] o (ai o aj)

whence x~x o (a2 o a2) EG' which proves the theorem. As a result of

Theorem 8 it is necessary for us to consider only half-groups G such

that G o G = G, since any other half-group is an equivalent extension

of one such. In our further discussion we shall assume, then, that

GoG = G.
Given two half-groups Gi and G2, there is no difficulty in defining

their "direct product" GiXG2. It is, in fact, the set of all pairs

igu gi) with giGGi, and g2£G2. (gi, g2) o ig{ o g2) = (gi o g{ , g2 o g2').

We now give an example of a half-group which is not in general a

group. Consider the set of all pairs (m, ra) where m and ra belong to a

fixed set M. Define (mi, «i) o (m2, ra2) = (mi, m2). We have [(mi, rai)

o (m3, ra3) ] o [(m2, ra^ o (m3, ra3) ] = (mi, m3) o (m2, m3) = (mi, m2)

= (mi, rai) o (m2, ra2). We call such a half-group a "simple" half-group.

Our main result which we shall demonstrate in the next section states

that any half-group can be derived from the direct product of a

group with a simple half-group by taking equivalent extensions and

retractions.

5. The structure theorem for half-groups. Define I as the set of all

elements equivalent to idempotent elements. (We assume G = G o G.)

To prove that 7 is a sub-half-group we observe first that if ei and et
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are idempotent then ci o e2~ei. For a o ei = (ei o e2) o (e2 o e2)

= (ei o ei) o ei so that ei~ei o c2. Now xi~ei and x2~e2 imply Xi o x2

= «i o ej by Theorem 7 and xi o x2~ei so that Xi£7 and x2£7 imply

Xi o x2£7. The idempotent elements belong to 7 so that 7 is a sub-

half-group. We observe that x = aoe with e idempotent implies

x o e = (a o e) o (eoe)=aoc whence x~a so that if y EI then y~e

with e idempotent, and z o y =z o c~z, z o [z o y] =z o z£7 and

finally z o [z o 7]C7. 7 is therefore an invariant sub-half-group of G

and G/I is a group by Theorems 3 and 4. Let ( = ) denote congruence

mod 7. We can then state

Theorem 9. (a) a m ft implies x o a~x o ft.

(b) The congruences a o x = b and x o a = b each have one and only

one solution except for congruences.

(c) ei o (et o x) =x for ei, e»£7.

(d) ei o yi = e2 o y2 implies ei = e2 if ei and e2 are idempotent.

Proof, (a) aobEI implies a o ft~e' with e' idempotent. Now

x o a = (x o ft) o (a o ft) = (x o ft) o e'~(xo ft), (b) and (c) both follow im-

mediately by passing over to the group G/I and replacing the con-

gruences by equations involving cosets. In (d) we also observe by

passing over to G/I that yi=y2 whence ei o yi~ei o y2 by (a). Since

e2 o y2 = Ci o yi we have e2 o y2~«i o y2 and (e2 o y2) o (y2 o y2)

= (ei o y2) o (y2 o y2) or e2 o y2 = ei o yi and e2~ei. Therefore e2 = e2

o e2 = e2 o ei =ei o ei = ei.

Define E as the simple half-group obtained from the set of idem-

potent elements of G. In other words E is the set of all pairs of

idempotent elements, (e', e"). We know that any half-group is

derived from one satisfying Go G = G by an equivalent extension.

We now prove for a G satisfying G o G = G

Theorem 10. Gis an equivalent retraction of the direct product of the

group G/I with the simple half-group E.

Proof. We denote the elements of G/IXE by (t, e', e") with

tEG/I and (e', e")EE. Multiplication is defined by fa, el, e")
o (h, e{, e{') — (tiOti, e(, e2) using the rule for multiplication in

simple half-groups. We shall define a function from G/IXE toG

which we shall show determines an equivalent retraction. For any

(t, e', e")EG/IXE, let a*=t; the equations e' o x=a, e" o y = x have

solutions unique up to congruences, by Theorem 9(b). Define

f(t, e', e")=e' o (e" o y). If xi, yi is another solution to the above

equations, then yi=y and e" o yx~e" o y, e' o [e" o yi]=e' o [e"oy"

so that/ is single-valued.
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Let XGG. Then X=Xi o X2. We shall see that/(X*, Xi o Xi, X2 o X2)
=X. For, a solution to the congruence e'o x=X or (Xi o Xi) o x

=\i o X2 is x=X2 o Xi. A solution of e" o y=\t o Xi or (X2 o X2) o y

=X o Xi is y =Xi o X2 whence/(X*, Xi o Xi, Xj o X2) = (Xi o Xi) o [(X3 o X2)

o (Xi o X2) ] = (Xi o Xi) o (X2 o Xi) =Xi o X2 =X. / is therefore "onto."

We must show that /(a) =/(j3) implies a~p. We notice that since

the rule for the multiplication of it, e', e") does not depend on e",

it, e', e{')~it, e', ei'}.fih, ei, e{')=fih, ei , ei') implies ei o iei' o yi)

= ei o iei' o y2) and ei =ei by Theorem 9(d). Moreover ai = e/

o iei' o yi) =ei o id' o yi) =-a2. Here yuyt, ai, a2 are used as in the

definition off. Since ai = a2 we must have /i=/2. Hence (<i, ei, ei')

~it2, e2, e2') as was to be shown. It remains to prove that/ preserves

multiplication.

Let

/(/, e', e") = e' o ie" o y); e" o y = x,        e' o x = a,    a* = t.

fih, ei, ei') = ei o iei   o yi);   ei' o yx = xu    ei 0x1 = au   af = h.

Then

fit o h, e', ei) = e' o (ei o y2); ei o y2 = x2, e' o x2 = a2, a2 = a o ax.

Now (e' o ai) o (a o ai) =e' o a. By Theorem 9(c), e' o ai=xi,

e' o a = x, y2 = a2. We therefore obtain Xioa2=x; (ei' o yi) o yt

= e" o y. By Theorem 9(a),

(e{ o y2) o [ei' o yi) o y2] ~ iei o y2) o (e" o y)

or

ei o iei' o yi) ~ iei o y2) o ie" o y)

whence

W o ie" oy)]o [ei o id' o yi)] = [e' o ie" o y)] o [(«,' o y2) o (e" o y)]

and

[e' o ie" o y) ] o [«{" o («/' o y,) ] = e' o (e/ o y2);

/(/, e', e") o fih, ei, ei' )=/(/o h, e', ei)

= f[it,e',e")oih,ei,ei')]

as was to be shown. This completes the proof.

For completeness we state:

Theorem 11. Every element of lis of the form e' oe" where e' and e"

are idempotent.
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Proof. Let x£7. Then x=xi o x» = (xi o x2) o (x» o x2) =x o (x»

o x2). Also x~e' with e' idempotent, so that x = e' o (x2 o x2) =e' o e"

since x2 o x2 is idempotent. This shows, by the way, that every sub-

half-group of G contains 7.

We conclude with another example of a half-group that is not a

group. Let G be the set. of real numbers with a o ft defined as that

x, 0^x<l such that a — b=x (mod 1). It can be shown that G is a

half-group, and is, in fact, an equivalent extension of the group R/Z

—that is, the group of reals modulo 1.
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