THE ZEROS OF QUASI-ANALYTIC FUNCTIONS!
ARTHUR O. GARDER, JR.

1. Statement of the theorem.

DeriNiTION 1. C(M,, k) is the class of functions f(x) for which
there exist positive constants 4 and k and a sequence (M), such
that

(1) | f™(x)| < AkM,, —o<g< o, n=0172--.

DErINITION 2. C(M,, k) is a quasi-analytic class if 0 is the only
element f of C(M,, k) for which there exists a point x, at which
f™(x0) =0 forw=0,1, 2, - - -.

We introduce the functions

(2) T(u) = max u"(M,)™}, 0=u< o,
n=0
and
2 v
3) H(v) = —f u=? log T(u)du.
T J

The following property of H(v) characterizes quasi-analytic classes.

THEOREM 3 [5, 78].2 Let lim,.,, MY"= w. A necessary and sufficient
condition that C(M,, k) be a quasi-analytic class is that
4) lim H(v) = o,

0—

where H(v) is defined by (2) and (3).

DEFINITION 4. Let »(x) be a function satisfying

(i) »(x) is continuously differentiable for 0 <x < o,

(i) »(0)=1, ¥’ (x)20,0=x< o,

(iii) xv'(x)/v(x) =0 (log x)~!, x— .
We shall say that f(x) EC* if and only if f(x) EC(M}, k), where
My =n![v(n)]* and v(n) satisfies the above conditions.

DEFINITION 5. Let Z(#) be a real-valued function which is less
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than or equal to the number of zeros of f(x), counted according to
their multiplicities, in the closed interval —u<x=<u.

We wish to give a new proof of the following theorem. It was first
proved in a somewhat stronger form by Hirschman [2, 402].

THEOREM 6. Let f(x) EC*, as in Definition 4. Let C* be a quasi-
analytic class. Let H(v) be defined by (3). If there exists a function
Z(u) satisfying the conditions of Definition S such that

(5) lim sup H[Z () ]/u > &,

y— 0

then f(x)=0.

2. Results needed in the proof. The basic idea of the present proof
makes use of the inversion theory of the class of convolution trans-
forms with totally positive kernels, a theory which has been de-
veloped by Hirschman and Widder [3].

Let (a.)n-, be a sequence of positive real numbers such that

6) et < », el = .
=l

==l
Let (b.)n-0 be a sequence of real numbers satisfying
(7 lim &, = 0.

n— o

Let s be the complex variable s =¢ +4r, and define the entire functions

hod s
(8) En(s) = e» ][] (1 — ——) e, m=20,12,.--.

n=m+-1 an

The first of conditions (6) insures the convergence of the infinite
product (8). The functions G.(¢) are defined by

(9 Gn(t) = (2mi)? f iwe“[E,,.(s)]‘lds, m=012—---.

—10

We shall write E(s) =E(s), G(t) =G(t), and b=b,. It can be shown
[3, 144] that the integral (9) converges absolutely for all real numbers
t.

THEOREM 7 [3, 143-144). If the functions Gn(t) are defined by
(9), En(s) by (8), then

f Qe‘“Gm(t)dt = [E.(s)]"Y, m=0,12--,

—o0
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the integral comverging  absolutely for — o <o<a, where
a=min (ax, + »).

THEOREM 8 [3, 155]. If the functions Gn.(t) are defined by (9), then

(1) Gu() =0, —o <t<oo,m=0,1,2, - -,

(i) [2uGu(t)dt=1,m=0,1,2, - .

If we let ¢(¢) be a bounded and continuous function of ¢ on the
whole real axis, it is clear from Theorem 8 that the convolution
transform

(10) @ = [ "G(x — Dot

converges for all real values of x.
To solve the problem of inverting this transform, we introduce
the linear differential operator

(11) Pu(D) = ¢sm2 I] (1 _ _D) pien

ne=1 Qan,
where the operations e*? and D applied to a function f(x) mean that
e’?f(x) = f(x +a),  Df(x) = f'().
It may be seen quite readily that
(12) P.(D)G(t) = G(}), — o <t < o,
If we combine Theorem 8 (ii) with (12), we may show

THEOREM 9 [3, 171, 181, 191]. If ¢(¢) is a bounded continuous func-
tion of t, if G(t) is the kernel function defined by (6), and if f(x) is de-
fined by the convolution transform (10), then

lim P.(D)f(x) = ¢(x), — o < zx< o,

The proof of the following theorem depends on results due to
Plancherel [7, 76] and to Kolmogoroff [4, 3]. Only a sketch of the
proof will be given here.

THEOREM 10. Let Y(x) =(m~Y? sin x)/x, w(x)=y%(x/2). Define
F(x) =w(x)f(x). Let (M), be a sequence of positive real numbers such
that

(i) limy.o MY*= o,
and define T'(u) by (2). If

(i) f(x)EC(Ma,, k),

(iii) ¢(f) == we—i=tF(x)dx,
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and if ki is any number such that ky >k, we have that
e()T(| t]/k) = O(1), t— + .
Proor. It is first necessary to show that, if k> &, then

(13) fm | F(x)| dx < A1k1M,.

To show this, one uses the results mentioned above and proceeds in
a manner similar to that in [1, 209].

Since w™(— o) =w™(w)=0 for n=0, 1, 2, - - -, the same is true
of F®W(4 «). Integrating by parts the transform which defines ¢(f),
we therefore obtain

o(t) = fwe—“’(il)—"F“)(x)dx.

From (13) it follows that
loe )| = |t 4:1k1M., n=01,2---.

Applying the definition of T'(u), this yields the conclusion of our
theorem,

o] = 4y/T(|t] /).
By the symbol f(x)~g(x), we mean that lim... f(x)/g(x) =1.

THEOREM 11 [2, 398-399]. Let C* be the class of functions of Defini-
tion 4. Let the function v(x) satisfy (i), (ii), and (iii) of Definition 4.
If T(u) is defined by (2), then

(14) log T(#) ~ u/v(u).

LeEMMA 12. Let v(x) be the function defined in Definition 4. Then
v(ax)~v(x) for any a>0.

Proor. This is readily deduced from x»'(x) /v(x) =0(1) as x— .
Combining the results of Theorems 10, 11, and Lemma 12, we
obtain

TuEOREM 13. Let f(x) EC*. Let
1 sin (x/2)7?
o) = | —] ,

w1 (x/2)
and define

F) = o@fm, 40 = )m )@
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For any k1> k, we have that

o(l) = O(exp <k_;(—ll%>) t— + o,

3. Representation of quasi-analytic functions as convolution trans-
forms.

LEMMA 14. Let the class of functions C* be a quasi-analytic class. Let
v(x) be defined as in Definition 4. If we take an=nv(n) for n=1, 2,
3, -, then

o 0
Y art < o, darl= .
n=1

n=1

Proor. The convergence of the first series follows from »(n) =1 and
the comparison test. We conclude from Theorems 3 and 11 that

[

diverges. Hence we have that D ., a;'=w.

THEOREM 15. Let v(n) be defined as in Definition 4. Let a,=nv(n);
n=1,23, ... Let E(s) be defined by

Bs) =11 (1 ~ i) ion,
n=1 an
Then, if € is an arbitrary positive number,
(15)  EGn) =O0(exp [A + @/ || (| 7])]), 75 % .

Proor. We first define a function #(%), which counts the zeros of
E(s). We set

(16) n(uw) =n, w(n) 2 u=(n+ Dvin+1), n=2012---
Since v(n) is nondecreasing, we have that

v [nv(n) ] - n(w)v(1) - v[(n + Dv(n + 1)]

17 = =<

a7 (n+ Dv(n+ 1) u v(n)
if u lies in the interval my(n) Su < (n+1)v(n+1). We assert that
(18) v[mv(n)] ~ v(n).

For it follows from (iii) of Definition 4 that there exists a positive
constant M such that, if » is sufficiently large,



934 A. O. GARDER, JR. [December

logv[nv(ﬂ)] _ f"’(”’ v (x)dx < Mf""(") dx
v(n) n v(x) n x log
lo
< Mlog [1 4 lig”(")].
n

Thus we have that

(19) 1

IIA

IIA

v[nv(n)] log v(n)M
v(n) |:1+ log » ] ’

But it is also true that

z 4/ d
log W) =f v (3)dy = o(1) log x, x— o,
¥(1) 1 ()
which implies that
[log v(n)]/log n = o(1), n— o,

Thus the right side of (19) tends to 1 as » tends to infinity; hence,
(18) is established. But now it follows from (17) that

(20) n(w) ~ u/v(u).
Let € be an arbitrary positive number; there exists %, such that
(21) 1 — ¢/7) < n(u)v(u)/u < 1+ (2¢/7), u > ug.

Now we observe that

log | E(ir)| = log IL [1 + (F/dn ] = (1/2) 3 log [1 + (/)]

na=l n=1
= (1/2) [ tog [t + (r/u) Jan()
[}
An integration by parts yields
log | Eir)| = = f () /u(w? + 12) |du.
0

Thus it follows from (21) that
. [ [n(w) — {1 + (2e/7r)} {u/v(u)}]du
log | E(ir) [ <7 fo )

°° d
el [y
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log | E(ir)| <0(1) + [t + Qe/n)][| 7| /v(| 7])]

°°1/(|-r|) |‘r|du .
@) J, ) ) 7] =

Setting

7 f°° V(lT') ITIdu
= . )

o v(w) (ur+1?)
we assert that limj; ., I=/7(14v2)~dv. If we split the range of
integration into the two intervals [0, |7|] and [|7|, «] and denote
the resulting integrals by I and I, respectively, we may take =v| T

to observe that
* p( | TI ) dv
L= _d
v velr]) A+ )

Since v=1, we have that V(l‘l’l )/v(v|¢| )=1; from Lemma 12, we also
have that u(v] ‘Tl )~v( | 7'[ ). Thus we may apply Lebesgue’s limit theo-
rem to conclude that

lim 7, =f (1 + v»)~'dv.
1

|r|—e

Also, if § is any real number such that 0 <§<1, there exists ;>0
such that, for b>a=u,,

b b
tog [+®)/4(@)] = [ B@)/ma)lin <8 f dx/x = b log (b/a),

or
[»(8)/v(0)] = (b/a).
Taking b= ITI, a=v|7-| , we conclude that

[»(8)/v(a)] = v, w/|r| Svs 1

But now we may again set u =v|r| to obtain

1 v(|7‘) |1'|du 1 dv
I, = . v(|7]|)/v(v]|r ’
fo o iyt Bhsel Dl s

I =o(1) + f F0)(1 + 0t)-1d, 7] =,
0

where we have set
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fio) = {V(|1’|)/v('v|7|), ul/l‘r' =91,
0, 0<v=<m/|r|
If we now define
' 0<v=1,
80) = {0, =0,
it follows from the preceding remarks that
f:() = g(v), 0svs1
Also, if 0<v=<1, Lemma 12 states that v(]1'| )~v(v|1~|). Thus
lim /(1) = {1, 0<v=1,
7] 0, v = 0.

Since 0<6<1, g(v)/(1+v?) is an integrable function. Hence Lebesgue’s
limit theorem implies

1
lim I, =f (1 4+ v?)~dv.
0

|r]—e

Letting | 7| =, we obtain from (22) that

. log | E(ir) |
llmigpm = (@/2) +e
In a similar fashion, we deduce from (21) that
lim inf M = (r/2) — e
elme 7] /2(] 7))
Since ¢ is arbitrary, we conclude that
(23) log | E(in) | ~ (x/2)| = | /»(| ).

The desired result (15) is an immediate consequence of (23).
Using the infinite product E(s) defined in Theorem 15, we introduce
the kernel function

G(t) = (2ri)? f e*t[ E(s) |1ds.

—100

THEOREM 16. Let C* be a quasi-analytic class, f(x) E C(M,, k). Let
w(x) be defined as in Theorem 13. Set h(x) =f(ax) so that h(x)E C(M,,
k). Set a=2/mwki, where ki is any number such that k1> k. Define

(24) F(x) = h(x)w(x).
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There exists a bounded continuous function 6(t) such that
(25) F(x) = f Gz — DoQ)dL,

the convolution transform converging for all values of x.

Proor. We set
o(t) = (2m)~1/2 f e ioF (x)dx.

Since h(x) € C(Mj, ak), Theorem 13 implies that

(26) 6(t) = OCexp [—(x/D¥ [t| /(D] [t] = =,
where k' <ki/k. We choose k' > 1. Then we define the function L(u) by
(27) L(u) = E(iu)¢(u).

From (15) and (26), L(u) €EL;. The boundedness and continuity of
0t) = (21r)_“2f et L(u)du

are then simply elementary properties of Fourier transforms [7, 202].
Consider the integral

I= f wG(x — Ho(t)dt

=(21r)—1/2wa(x — t)dtfwe‘“‘L(u)du.

By Theorem 8, and since L(u) € L,, this integral converges for every
value of x and may be inverted by Fubini’s theorem to give

I= (21r)—‘/2wa(u)dufmG(x — f)eiutdl.

—o0

Set x —¢t=7y. Then by Theorem 7
f G(x — Deidt = f G(y)e=vdy = e/ E(iu).
From (27) we see that

I= (21r)"”2f o(u)en=du,
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Since ¢(«) and F(x) both €L, the inversion formula for the Fourier
transform [7, 4] may be applied to deduce the desired relation (25)

I =F(z) = f“G(x — He(t)de.

4. Proof of the main theorem. By the symbol f(x)=~g(x), we
shall mean that lim sup,.. f(x)/g(x) =1.

LEMMA 17 [2, 398]. Let the class C* of Definition 4 be quasi-analytic.
Let

H(v) = (2/7) f 1’u‘z log T(u)du.

Then
(i) H(ax)~H(x), >0, x— .
(ll) H(xlxg) = ~H(x1) +H(x2) y X1, Xg—> 0,

By Theorem 3, H(v)— » as v— . Thus the function H*(v) which
is inverse to H(v) is well defined for 0=Sv<  and

'* (v
(28) v = (2/1r)f w2 log T(u)du.

We proceed to the proof of Theorem 6.

Let C* be a quasi-analytic class, f(x) € C*. We assume that
(29) limsup H[Z(w)|/u = ' > k (=),
where Z(u) is the function of Definition 5. We wish to show that
f(x)=0. Let Z,.(u) be less than or equal to the number of zeros of
f(x) in the interval 0=x=u; let Z_(u) be less than or equal to the
number of zeros of f(x) in the interval ~# =x =0; require that Z, ()
+Z_(u) =Z(u). Then (29) implies that either or both of the relations
(30) lim sup H[Zy(u)]/u = ¥,

u— o

31 lim sup H[Z_(u)]/u = k",
must be true. For we have that H(2x)~H(x) by Lemma 17 (i).
Hence, if both of the limits superior (30) and (31) were less than &'/,
we would obtain a contradiction to (29). Thus we may assume that
(30) is true.

Let F(x) be defined as in Theorem 16. Let W(u) be less than or
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equal to the number of zeros of F(x) counted according to their
multiplicities in the interval 0 £x <« and require that W(u) = Z, (au).
If we choose k; so that k"> k1 >k and take a=2/7k; in Theorem 16,
it follows from (30) that

(32) lim sup H[W(u)]/u = ak’ > 2/x.

U0

But (32) implies that there exists a sequence (IV;),2;, lim;j.o N;= o,
and a real number ¢>0 for which

(33) W(N;) > H*[(2/7)(1 + ¢ N;].

Divide the interval [0, N;] into N} subintervals of length 1/N;. There
will exist one subinterval S; which contains at least

(34) N7 H*[2/m) (1 + ¢ N;]

zeros of the function F(x). For if this were not the case, we would
deduce a contradiction to (33).
Now we assert that, for any a>0,

(35) lim v—2H(av) = .

Land ]

For, applying (28) and Theorem 11, we have that

H*(v)

v = (2/7) fﬂ (v)u—2 log T(#)du ~ (2/7r)f du/uv(u).

For any real number ¢>0 and v large enough, we deduce that

" v)

du/uv(u) gf du/u = log H*(v),

1

4

(/201 — ¢ < f

1
or

exp [(r/2)(1 — &v] S H¥(v),

which implies (35). But from (35) we see that if the intervals S; re-
main bounded, then f(x)=0 follows from Definition 2 and Rolle’s
theorem.

Thus we may suppose that the intervals S; tend to infinity. Let
x be an arbitrary, but fixed, real number. We may suppose that x
lies to the left of the left-hand end point of each subinterval S;;
7j=1,2,3, .- -. Choose n; such that

(36) x+ D, [kv(k)] lies to the left of S},

k=1
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nj+1
(37 x4+ Y. [kv(k)]'liesin or to the right of S;.

ka1

This is possible by Lemma 14.

Recalling that each interval S; is contained in the interval [0, N;],
we now estimate n;. For any real number 8 >0 and j sufficiently large,
we have that

mH () <f"i dv <f”i 1 <N,—x
2048 =y we) TJ. wETT T

which yields
(38) n; < H¥[(2/m)(1 + )(N; — x)].

But now Lemma 17 (ii) may be used to establish that, if v is suffi-
ciently large, & is sufficiently small, and b is any constant,

(39) H*[(2/m)(1 4 8)(v + b)] < v2H*[(2/m)(1 + &)v].
If we now observe that
[1 — (D/4)]f(x) = eA=De4=f(x)/(—A4),

we deduce from (34), (38), and (39) that there exists, by Rolle’s theo-
rem, at least one zero of the function

ni

I1[1 — (D/an) |F(x)

k=1

in the interval S;. Denote this zero by ;. Choose b=5b,=0 and
(bj);=1 such that

(40) x4+ 2 (W] + b5 = &
ka1
From (36) and (37) we see that
ERIRCTE VI
Thus lil'n‘,',°° b,=0
Let ar=Fkv(k). Let G(t) be the kernel function constructed in the

proof of Theorem 16. That theorem asserts that there exists a con-
tinuous function 6(¢) such that

F(x) = wa(x — )o(8)dt.

If we take
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P (D) = v [T [1 — (D/an)]e®r=,
k=1

it follows from Theorem 9 that
lim P,,(D)F(x) = 6(x).
Pt

But from (40) we have that
P @) = L 11 - 0/enFe) = 0.

Hence we conclude that (x) =0, since x is arbitrary. But this means
that f(x) =0.
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