
THE ZEROS OF QUASI-ANALYTIC FUNCTIONS1

ARTHUR O. GARDER, JR.

1. Statement of the theorem.

Definition 1. C(Mn, k) is the class of functions f(x) ior which

there exist positive constants A and k and a sequence (Af„)"_0 such

that

(1) |/(n)(x)|   ^AknM„, - oo < x< oo,» = 0,l,2, • • • .

Definition 2. C(Mn, k) is a quasi-analytic class if 0 is the only

element / of C(Mn, k) ior which there exists a point x0 at which

/<">(*„) =0 for « = 0, 1, 2, ••• .
We introduce the functions

(2) T(u) = max u"(M„)_l, 0 ^ m < oo,

and

(3) H(v) = — f u-2 log T(u)du.
T  J l

The following property of H(v) characterizes quasi-analytic classes.

Theorem 3 [5, 78 ].2 Let lim,,.,*, M„/n= °o.A necessary and sufficient

condition that C(Mn, k) be a quasi-analytic class is that

(4) lim H(v) = oo,

where H(v) is defined by (2) and (3).

Definition 4. Let v(x) be a function satisfying

(i) v(x) is continuously differentiable for 0^x< oo,

(ii) v(0) = l, v'(x)^0, 0^x<oo,

(iii) xv'(x)/v(x)=0 (log x)-1, x—>oo.

We shall say that/(x)GC* if and only if f(x)EC(Ml, k), where
M* = n\[v(n)]n and v(n) satisfies the above conditions.

Definition 5. Let Z(u) be a real-valued function which is less
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than or equal to the number of zeros of /(x), counted according to

their multiplicities, in the closed interval — u^x^u.

We wish to give a new proof of the following theorem. It was first

proved in a somewhat stronger form by Hirschman [2, 402].

Theorem 6. Let fix) G C*, as in Definition 4. Let C* be a quasi-

analytic class. Let Hiv) be defined by (3). // there exists a function

Ziu) satisfying the conditions of Definition 5 such that

(5) \imsupH[Ziu)]/u > ft,

then f(x) h0.

2. Results needed in the proof. The basic idea of the present proof

makes use of the inversion theory of the class of convolution trans-

forms with totally positive kernels, a theory which has been de-

veloped by Hirschman and Widder [3].

Let ian)n-i be a sequence of positive real numbers such that

(6) Ean-2< », E«.-'= ».
n—1 n—1

Let (On)r.o be a sequence of real numbers satisfying

(7) lim bn = 0.
n—»«

Let 5 be the complex variable 5 =a+ir, and define the entire functions

(8) £„(«) = e^'   f[   (l - —\ e'"*,     m = 0, 1, 2, • • • .
n~m+l   \ a„/

The first of conditions (6) insures the convergence of the infinite

product (8). The functions Gm(2) are defined by

/» ioo

(9) G»(») = (2m)-1 1     e"[Emis)]-lds,   m = 0, 1, 2, • • • .
"  —100

We shall write £(5) =Eois), G(f) =G0(0» and b = b0. It can be shown

[3, 144] that the integral (9) converges absolutely for all real numbers

t.

Theorem 7 [3, 143-144]. // the functions Gmit) are defined by

(9), Emis) by (8), then

f   e-"Gmit)dt =- [Emis)]~\       m = 0, 1, 2, • • • ,
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the     integral     converging     absolutely    for     — oo <a<a,     where

a = min (ak, +00).

Theorem 8 [3, 155]. If the functions Gm(t) are defined by (9), then
(i) Gm(t)^0, -cc<t<co,m = 0, 1, 2, • • ■ ,

(ii) f-„Gm(t)dt = l,m = 0, 1, 2, ••• .

If we let <b(t) be a bounded and continuous function of t on the

whole real axis, it is clear from Theorem 8 that the convolution

transform

/co G(x - t)4>(t)dt
-CO

converges for all real values of x.

To solve the problem of inverting this transform, we introduce

the linear differential operator

(11) Pm(D) = e«-w f[ ( 1-) ePia",
n-i \        anJ

where the operations eaD and D applied to a function f(x) mean that

eaDf(x) = /(* + a),       Df(x) = f'(x).

It may be seen quite readily that

(12) Pm(D)G(t) = Gm(t), - oo <t< oo.

If we combine Theorem 8 (ii) with (12), we may show

Theorem 9 [3, 171, 181, 191 ]. If <b(t) is a bounded continuous func-

tion of t, if G(t) is the kernel function defined by (6), and if f(x) is de-

fined by the convolution transform (10), then

lim Pm(D)f(x) = d>(x), - oo < x < oo.

The proof of the following theorem depends on results due to

Plancherel [7, 76] and to Kolmogoroff [4, 3]. Only a sketch of the
proof will be given here.

Theorem 10. Let 4/(x) = (-n-~112 sin x)/x, w(x)=^2(x/2). Define

F(x) =w(x)/(x). Let (Mn)„°=i be a sequence of positive real numbers such

that
(i) limn.M</n=oo,

and define T(u) by (2). If

(ii) f(x)EC(Mn,k),
(iii) <j>(t)=flae-'"F(x)dx,
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and if ki is any number such that fti > ft, we have that

4>it)Ti\t\/ki) =0(1), <-»±co.

Proof. It is first necessary to show that, if fti>ft, then

(13) f    \Fix)\dx^AikniMn.
J -00

To show this, one uses the results mentioned above and proceeds in

a manner similar to that in [l, 209].

Since w(n)(— <x>) =w(n,(oo) =0 for ra = 0, 1, 2, ■ • • , the same is true

of F(n)(+ oo). Integrating by parts the transform which defines <pit),

we therefore obtain

(bit) =   f   e-itxiit)-nF^n\x)dx.
"  — 00

From (13) it follows that

|4 it) |   S  \t \~nAikniMn, n = 0, 1, 2, • • • .

Applying the definition of F(m), this yields the conclusion of our

theorem,

| 0(0 |   ^Ai/Ti\t\/ki).

By the symbol/(x)~g(x), we mean that limI_c0/(x)/g(x) = l.

Theorem 11 [2, 398-399]. Let C* be the class of functions of Defini-

tion 4. Let the function vix) satisfy (i), (ii), and (iii) of Definition 4.

// T(u) is defined by (2), then

(14) log T(u) ~ u/viu).

Lemma 12. Let vix) be the function defined in Definition 4. Then

viax)~vix) for any a>0.

Proof. This is readily deduced from xj/(x)/p(x) =o(l) as x—>=o.

Combining the results of Theorems 10, 11, and Lemma 12, we

obtain

Theorem 13. Let fix) GC*. Let

f 1    sin (*/2)-|*
o(x) =-,

Lr1'1     (x/2)   J
and define

F(x) = co(x)/(x),       4>(t) = -T^TITi/  <r*«F(*)dx.
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For any ki>k, we have that

3. Representation of quasi-analytic functions as convolution trans-

forms.

Lemma 14. Let the class of functions C* be a quasi-analytic class. Let

v(x) be defined as in Definition 4. If we take an = nv(n) for « = 1, 2,

3, • • • , then

CO OO

Z an2 < oo, Z an1 =  °°•
n==l n=-l

Proof. The convergence of the first series follows from v(n) ^ 1 and

the comparison test. We conclude from Theorems 3 and 11 that

/•»     du
i     uv(u)

diverges. Hence we have that ZT-i #» 1= °°-

Theorem 15. Let v(n) be defined as in Definition 4. Let an = nv(n);

n — 1, 2, 3, • • • . Let E(s) be defined by

£w = n(i - —V/a"-
n-i \        aj

Then, if e is an arbitrary positive number,

(15) E(ir) =0(exp [(1 +e)(T/2)|r|A(|r|)]), t-+±oo.

Proof. We first define a function n(u), which counts the zeros of

E(s). We set

(16) n(u) = n,   nv(n) ^ u g (n + l)v(n +1),       n = 0, 1, 2, • ■ • .

Since v(n) is nondecreasing, we have that

nv[nv(n)] n(u)v(u)       v[(n + l)j<(w + 1)]
(17)-=-^ ■-*

(n + l)v(n +1) u v(n)

if u lies in the interval nv(n) ^u^(n + l)v(n + l). We assert that

(18) p[wi>(w)] ~ v(n).

For it follows from (iii) of Definition 4 that there exists a positive

constant M such that, if n is sufficiently large,
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J'jwj'M] r n"(n)   v\x)dx /•""(n)       gx
log-=   I -<; M I -

vin) Jn vix) J„        xlogx

[log vin)~\

log ra  J

Thus we have that

vfWw)]      f        log v(n)~\M(19) i£±^Jl£ h+_J_li     .
v(n) L log ra  J

But it is also true that

vix)        r x v'iy)dy
log—— =   I     ——— = o(l) log x, X-»oo,

"(1)      J i     Ay)

which implies that

[log i>(w)]/log n = oil), ra—> oo.

Thus the right side of (19) tends to 1 as ra tends to infinity; hence,

(18) is established. But now it follows from (17) that

(20) n(u) ~ u/viu).

Let e be an arbitrary positive number; there exists w0 such that

(21) 1 - (2e/x) < n(u)v(u)/u < 1 + (2e/ir), u > u0.

Now we observe that

log | Eiir) |   = log  II [1 + (r A*)]1'2 = (1/2) £) log [l + (//a*)]
n-l n-l

= (1/2) f    log[l + (ryM2)]a-«(ra).
J o

An integration by parts yields

log | Eiir) I   = t2 f   [niu)/uiu2 + r2)]du.
J o

Thus it follows from (21) that

/• «•   [»(«) -   { 1 + (2e/x) } {«/*(«)} ]d«
log | £(«■)     < r2 - -

Jo «(«    + T2)

.        /»" AM

+ [l + (20r)]r2 »
J o     K«) (ra2 + t2)
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log | E(ir) |   < 0(1) + [1 + (2«/*)][ | r | A( | r | )]

/' °° v( | T | ) | T |  du ..

0 ?(«) (U2 +  T2) ' |T|-»00.

Setting

f°°   K|r|)      |r|<fa

Jo        r(«0      V + r2)'

we assert that lim|r|,M 7=/0"(l+z<2)~1<fo. If we split the range of

integration into the two intervals [0, |r| ] and [|r|, oo ] and denote

the resulting integrals by7i and 72, respectively, we may take m=w|t|

to observe that

r M   v( | t | )       dv
'"J,        V(V I T I  ) ' (1  + V2)  '

Since »«=1, we have that ^-( | r | )A(HTI) iSl; from Lemma 12, we also

have that »»(u| x|)-—■i'(j -r |). Thus we may apply Lebesgue's limit theo-

rem to conclude that

(1 + v2)-Hv.
1

Also, if 8 is any real number such that 0 < 5 < 1, there exists Wi>0

such that, for b>a^uu

[v'(x)/v(x)]dx g 8 I    dx/x = 5 log (b/a),

or

[v(b)/v(a)] g (b/a)\

Taking 6 = |r|, a=*>|r|, we conclude that

[v(b)/v(a)] ^v->, Mi/1 t |   £ v g 1.

But now we may again set M=»|r| to obtain

rU1 v( | t | )     I t I <Jk        /• j    r   i   i ii,     dv

J0 v(u) (U2 + T2) JVl/\r\ (1+V2)

7i =o(l) +  f  /T(»)(l + V2)~'dv, I r I  -» oo,
^ 0

where we have set
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,,, (v(\t\)/v(v\t\), Ui/\r\   gDgl,
Mv = ~\ ii

10, 0£v£ui/\t\.

If we now define

(IT* 0 < « £  1,gw = ■{
lo, » = 0,

it follows from the preceding remarks that

Mv) ^ g(v), Ogtgl.

Also, if OOgl, Lemma 12 states that »'(|t|)~j'(»|t|). Thus

(1, 0 < v <, 1,
lim   /,(») = \

UI— (0, » = 0.

Since 0<5<l,g(v)/(l+v2) is an integrable function. Hence Lebesgue's

limit theorem implies

lim   h -  f  (1 + a2)"1*.
|r|->» «/o

Letting |t| —>oo, we obtain from (22) that

log  | Eiir) |
Ihn sup   ,    , , ,.    |N ^ Or/2) + e.

|r|—     |r|/K|r|)

In a similar fashion, we deduce from (21) that

log  I Eiir) I
lim inf '     j,    ^ ire/2) - t.

Since e is arbitrary, we conclude that

(23) log  | Eiir) |   ~ Or/2) | t | /i»( | t | ).

The desired result (15) is an immediate consequence of (23).

Using the infinite product E(s) defined in Theorem 15, we introduce

the kernel function

/» {oo

Git) = i2iri)~1 I     e'^Eis)]-^.
•I — too

Theorem 16. Let C* be a quasi-analytic class, fix)GC(M*, ft). Let

a(x) be defined as in Theorem 13. Set hix) =/(ax) so that h(x)GC(Mn',

aft). Set a = 2/wki, where fti is any number such that ki>k. Define

(24) F(x) = h(x)uix).
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There exists a bounded continuous function 6(t) such that

(25) F(x) =  f G(x- t)6(l)dt,
J — CO

the convolution transform converging for all values of x.

Proof. We set

/oo e~ixtF(x)dx.
-CO

Since h(x)EC(Mn', ak), Theorem 13 implies that

(26) <p(t)=0(exp[-(*/2)k'\t\/v(\t\)]), M - °°.

where k'<ki/k. We choose k'> 1. Then we define the function L(u) by

(27) L(u) = E(iu)<t>(u).

From (15) and (26), L(u)ELi. The boundedness and continuity of

0(t) = (27T)-1'2 f   e*"L(u)du
v —oo

are then simply elementary properties of Fourier transforms [7, 202].

Consider the integral

I =  f G(x - t)6(f)dt
J -CO

/CO /» COG(x - t)dt I    eiv'L(u)du.
-CO J —M

By Theorem 8, and since T,(w) £7,i, this integral converges for every

value of x and may be inverted by Fubini's theorem to give

/CO /* °°L(u)du J    G(x - t)eMdt.
-CO J —CO

Set x —f =y. Then by Theorem 7

/•CO /» CO

I    G(x - /)eiu,<ft =   I   G(y)eiu'-x-^dy = eiux/E(iu).
J -CO •/  —CO

From (27) we see that

7 = (2a-)-1'2 |    4>(u)e™xdu.
J -00
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Since <p(u) and F(x) both ££i. the inversion formula for the Fourier

transform [7, 4] may be applied to deduce the desired relation (25)

/ = Fix) =  f G(x - t)dit)dl.
•7—00

4. Proof of the main theorem. By the symbol f(x)^~g(x), we

shall mean that limsupI,„/(x)/g(x) gl.

Lemma 17 [2, 398]. Let the class C* of Definition 4 be quasi-analytic.

Let

Hiv) = (2/tt) j    u~2 log Tiu)du.

Then
(i) i/(ax)~iZ(x), a>0, x—»oo.

(ii) £T(xiX2) ^'~i/(xi)+i/(x2), Xi, x2—»<».

By Theorem 3, H(v)—>«> as t>—»°o. Thus the function H*(v) which

is inverse to Hiv) is well defined for Q^v< oo and

/»H*(t>)

(28) « = (2/tt) I ra-2 log T(u)du.

We proceed to the proof of Theorem 6.

Let C* be a quasi-analytic class, fix)GC*. We assume that

(29) lim sup H[Ziu)]/u = ft" > ft (=oo),

where Z(w) is the function of Definition 5. We wish to show that

/(x)=0. Let Z+iu) be less than or equal to the number of zeros of

fix) in the interval O^x^w; let Z_(ra) be less than or equal to the

number of zeros of/(x) in the interval ~u^x^0; require that Z+iu)

+Z-iu) = Z(«). Then (29) implies that either or both of the relations

(30) lim sup H [Z+(ra) ]/« = ft",

(31) lim sup H [Z_(«) ]/« = ft",
fi—+«

must be true. For we have that H(2x)~H(x) by Lemma 17 (i).

Hence, if both of the limits superior (30) and (31) were less than ft",

we would obtain a contradiction to (29). Thus we may assume that

(30) is true.

Let F(x) be defined as in Theorem 16. Let W(u) be less than or
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equal to the number of zeros of F(x) counted according to their

multiplicities in the interval O^x^w and require that W(u) —Z+(au).

If we choose ki so that k">ki>k and take a = 2/irki in Theorem 16,

it follows from (30) that

(32) lim sup 77 [W(u) ]/u ^ ak" > 2/tt.
U—HO

But (32) implies that there exists a sequence (N/)£.i, limy..., A^y= oo,

and a real number e > 0 for which

(33) W(Nj) >H*[(2/t)(1 + c)N,].

Divide the interval [0, A7,] into N* subintervals of length 1/Nj. There

will exist one subinterval Sj which contains at least

(34) N^H*[(2/r)(l + e)Nj]

zeros of the function F(x). For if this were not the case, we would

deduce a contradiction to (33).

Now we assert that, for any o>0,

(35) lim ir2H(av) = oo.

For, applying (28) and Theorem 11, we have that

u~2 log T(u)du ~ (2/tt) J du/uv(u).

For any real number e>0 and v large enough, we deduce that

(ir/2)v(l - e) ^   J du/uv(u) ^  J du/u = log H*(v),

or

exp [(x/2)(l - e)v] g H*(v),

which implies (35). But from (35) we see that if the intervals Sj re-

main bounded, then/(x)=;0 follows from Definition 2 and Rolle's

theorem.

Thus we may suppose that the intervals Sj tend to infinity. Let

x be an arbitrary, but fixed, real number. We may suppose that x

lies to the left of the left-hand end point of each subinterval Sj\

j = l, 2, 3, ••• . Choose w,- such that

(36) x + Z [*"(*) V1 lies to the left of Sj,
*-i



940 A. O. GARDER, JR. [December

n,+l

(37) x+   Z    [*"(*) ]_l lies in or to the right of Sj.
k-l

This is possible by Lemma 14.

Recalling that each interval Sj is contained in the interval [0, A7/],

we now estimate My. For any real number 8>0 andj sufficiently large,

we have that

7r77(«,)         /•»'   dv         f»i     1
- =  I      - =  I      -g Nj - x,
2(1+8)      J i     w(v)      Ji     kv(k)

which yields

(38) ni^H*[(2/r)(l + 8)(Ni-x)\.

But now Lemma 17 (ii) may be used to establish that, if v is suffi-

ciently large, 8 is sufficiently small, and b is any constant,

(39) H*[(2/r)(l + 8)(v + b)]< ir2H*[(2/ir)(l + e)v].

If we now observe that

[1 - (D/A)]f(x) = eA*De-*xf(x)/(-A),

we deduce from (34), (38), and (39) that there exists, by Rolle's theo-

rem, at least one zero of the function

ft [1 - (D/ak)]F(x)
t-i

in the interval Sj. Denote this zero by £,. Choose b=b0 = 0 and

(bj)jLi such that

(40) *+£[M*)H+ */-€*■
le—l

From (36) and (37) we see that

| ft, |   < (nj+ 1)_1 + 7V71.

Thus limy^o ft,- = 0.
Let ak = kv(k). Let G(t) be the kernel function constructed in the

proof of Theorem 16. That theorem asserts that there exists a con-

tinuous function 8(t) such that

/CO

G(x - t)d(t)dt.
-CO

If we take
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Pnj(D) = «*» ft [1 - (D/a^V"*,
k-l

it follows from Theorem 9 that

lim Pni(D)F(x) = e(x).

But from (40) we have that

Pni(D)Fix) = fi [1 - iD/ak)]FHj) = 0.
k-l

Hence we conclude that 0(x) s0, since x is arbitrary. But this means

that/(x)=0.
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