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1. Introduction. Let Ibea topological space, and let R be the

real number system. If F is a function on XXR, xEX and tER, we

will usually denote F(x, t) by Ft(x). For each real number t, Ft

denotes the obvious function on X.

A (topological) flow on J is a continuous function F on XXR into

X such that:
(1) Ft is a homeomorphism of X onto X ior each tER; and

(2) Ft(F.(x)) = Ft+a(x) for all tER, sER and xEX.

We now state the general embedding problem for flows.

Embedding Problem. For a given space X and a given homeo-

morphism f of X onto X, does there exist a flow F on X for which

Fi=f?
Ii such a flow F exists, we say that/ is embedded in F.

In general, the embedding problem is quite difficult. In this paper

we discuss only the case in which X is an interval of real numbers.

If X is an interval of real numbers and / is a continuously differ-

entiable homeomorphism of X onto X, we may ask whether or not

/ can be embedded in a flow F for which each homeomorphism Ft has

a continuous derivative. We obtain some results pertaining to the

solution of this latter problem, although a complete solution is not

obtained.

2. The embedding problem for intervals. Let/be a homeomorphism

of an interval of real numbers onto itself. In order that it be possible

to embed/ in a flow, it is obviously necessary that/ be order preserv-

ing. We prove that this condition is also sufficient.

Lemma 1. If h is a homeomorphism of a closed interval [a, ft] onto

itself such that a and ft are the only fixed points of h, then it is possible

to embed h in a flow 77 such that if a<x<b and —Kt<l then Ht(x) is

between h~l(x) and h(x).

Proof. It is proved in [l] and [2] that there exists an order pre-

serving homeomorphism ^ on [a, ft] onto [0, <x> ] and a positive num-

ber A such that h(x)=\i/~l(A^/(x)) iora^x^b. Iif(x)>x ior a<x<b,
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then .4>1; if/(x)<x for a<x<b, then .4<1. If we now define

Ht(x)=\f/~1(At^(x)) for a^x^b and tGR, then it is easy to verify

that H has the desired properties.

Theorem 1. // / is an order preserving homeomorphism of an in-

terval J onto itself, then it is possible to embed f in a flow F.

Proof. We may assume without loss of generality that / is a

closed interval. Let K be the set of all fixed points of/, and let 2 be

the set of all closed intervals which are the closures of the components

of J—K. For each interval «£2, we use Lemma 1 to obtain a flow

U on u such that Ui =f\ u, and such that for — Kt < 1 and each point

x that is interior to U, utix) is between/_1(x) and/(x).

Now let x be a member of /. If xGK, we define £<(x) =x for all

tGR- If xGJ—K, then there exists w£2 such that x£w; and in this

case we define Ft(x) = Ut(x) for all tGR-

For each /, Ft is a one-to-one order preserving function on / onto /,

and it follows that Ff is a homeomorphism. Moreover, if tGR, sGR

and x£/, then it is easy to verify that £«(£„(x)) = £(+,(x).

We must finally prove that £ is continuous on JXR. Since each Ft

is continuous and £<£, = Ft+, for all t, s, it is sufficient to prove that £

is continuous at each point of the form (a, 0), a££ If a£/—£, it is

obvious that £ is continuous at (a, 0). Thus, let us assume that a££

and that (x„, tn)^>(a, 0) as ra—>oo. For all large values of » we have

— Ktn<l, and hence £(x„, tn) is between/-1(x„) and/(x„). Since

/ and /_1 are continuous and f(a) =f~l(a) = F(a, 0), it follows that

£(xn, tn)-^F(a, 0) as ra—>oo. Thus £ is continuous.

If the function h of the lemma has a continuous derivative, then

the function \[/ may be chosen so as to have a continuous derivative

on the open interval (a, b). It follows that each function Ht has a

continuous derivative on the open interval (a, b). Turning now to the

above theorem, we see that if/ has a continuous derivative on /, then

the flow £ may be constructed so that each £, has a continuous

derivative on J—K. We have no assurance, however, that the func-

tions Ft will have derivatives at fixed points of/, even though/ has a

derivative at these points. An interesting problem is that of deter-

mining conditions for/ that will guarantee that we can construct the

flow £ in such a manner that each function Ft has a continuous

derivative on all of /. We obtain a few results pertaining to this prob-

lem in the next section.

3. Flows of continuously differentiable functions. Throughout this

section we assume that / is a function which has the following prop-

erties:
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(i) / is a homeomorphism of a half open interval (a, ft] onto itself;

(ii) / has a continuous derivative on (a, ft];

(iii) /(x)>x for a<x<b;

(iv) /'(x)>0 for a<x gft;

(v) /' is monotone nonincreasing on the interval (a, ft].

We are going to prove that there exists a unique flow F such that

Fi=/ and such that Ft has a continuous derivative on (a, ft] for each

real number t. It is clear that if such a flow exists, then / must com-

mute with Ft ior each t. Thus, in trying to construct the flow F, it is

reasonable to first try to determine the set of all continuously differ-

entiable order preserving homeomorphisms that commute with /.

Using conditions (i)-(v) above, it is possible to prove the following

lemma. Since the proof is fairly straightforward, it is omitted.

Lemma 2. If a<x<b and a<y<b, then the infinite product

f[ {f(fn(x))/f(fn(y)))
lt-0

converges. Moreover, if a<a* <ft* <ft, then for each fixed y, the infinite

product converges uniformly in x for a*gx±Sft*.

In view of the above lemma, we obtain a continuous function <b if

we define c = (a+6)/2 and then define <j>(x) = T7»"-o [/'(/"(*))//'(/"M) j

for a<x<b.

Theorem 2. If g is a continuously differentiable homeomorphism of

(a, ft ] onto itself and g commutes with f, then

g'(x) = g'(b)<t>(x)/<b(g(x))

for a<x<b.

Proof. Since / and g commute, we obtain for all x,

/(«(*)) = «(/(*))■

We now differentiate each side of the above equation, obtaining

f'(g(x))g'(x) = g'(f(x))f'(x).

We solve for g'(x), obtaining

g'(x) = [f(x)/f'(g(x))]g'(f(x)).

Next we replace x by fk(x) in the above equation, and use the fact

that g and /* commute. We obtain

*'</*(*)) - IfVMVfWdWWW+Kx))-
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If ra is a positive integer, it follows that

Since g' is continuous at b and limB<00/n+1(x) =b, we obtain

K *_,o L/'(/*(s(*)))J *(g(*))

Corollary 1. Under the same hypotheses as for the above theorem,

g'(b)^0.

It is easy to prove under the hypotheses for/ that 0</'(») <1. We

define A=f'ib). It follows from the above results that any con-

tinuously differentiable homeomorphism on (a, b] that commutes

with / must be a solution of a differential equation of the form

dy/dx = A'<bix)/<biy).

We now study the existence and uniqueness of solutions of the

differential equation

£(/):    dy/dx = A'<p(x) / <p(y).

Lemma 3. Suppose that t is a real number and that a^d<b. Then

there exists at most one continuous function g on (d, b] such that g

satisfies E(t) on (d, b) and g(b) =b.

Proof. Suppose that g and h are continuous on (d, b], both are

solutions of E(t) on the interval (d, b), and g(b) =h(b) =b. If g and k

are not identical, then there exists a point p in the interval such that

g(p)^h(p). We may assume without loss of generality that g(p)

>h(p). There exists a point q, p<q^b, such that g(q)—h(q) and

g(x)>h(x) for p^x<q. We define w(x) =g(x) — h(x). The Mean

Value Theorem yields a point r, p<r<q, for which

gip) ~ KP)      v>iP) - w(o)
-=-= w'ir) = g'ir) - h'(r)

p - q p - q

= A'<b(r) (-—I .
Wg(r))      <t>ihir))j

Since f(r)>^(r) and <p is nonincreasing, it follows that

At<j>ir){l/4>igir)) — l/<j>ihir))} is nonnegative. We now have a con-

tradiction, since [g(p) — A(p)]/(p — q) is negative.

We next define a function $ on the interval (a, b] by letting
$(*)=»(/)*.
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Lemma 4. f> is an order reversing homeomorphism of (a, ft] onto
[0,   oo).

Proof. It is obvious that $ is continuous and strictly monotone

decreasing, and that $(ft)=0. Hence it is sufficient to prove that

limz^, <l>(x) = oo.

Let us assume that a<x<c. We first observe that

$(x) ̂     f <b(t)dt.

However, for x^t^c, *(O^IE-o [f'(P(t))/f(f(c))] ior each n.

Moreover, it is easy to prove by induction on n that

n/w))=-/"+iw.
t-o dt

It follows from these facts that <j>(x) ^ [fn+l(c) -f+1(x) ]/Ul.0f'(f(c))

for every n. Now let B be any positive number. It is easy to see that

limn_M/n+1(c) =6 and limnj.M Ht-o/'(/*(£)) =0- Thus there exists an

integer m such that fm+l(c)>(a+2b)/3 and

f[f'(fk(c)X(b-a)/3B.
k—a

Now choose e>0 such that if a<x<a+e thenfm+1(x)<(2a+b)/3. It

now follows that if a <x <a+e then $(x) >B. Therefore,

lim 4>(x) = oo.
X—Ht

Lemma 5. If g is an order preserving homeomorphism of (a, ft] onto

itself and g commutes withf, then lim*..6 <}>(x)/<b(g(x)) =1.

Proof. It is easy to verify that lim^ <b(x)/(p(fm(x)) =1 if m is an

integer. We shall show that there exists an integer n such that

fn~1(x)^g(x)^fn+2(x) ior a<x<b. Since <b is monotone, our lemma

will follow from the inequalities

<p(x)/<t>(f>-i(x)) g <b(x)/<b(g(x)) g <K*)/<K/»+2(x)).

There exists an integer n such that/n(c) ^g(c) ^/n+1(c). Now let x

be any member of the interval (a, ft). There exists an integer k such

that/*(c) ^x^/*+1(e). If we now use the fact that each power of / is

monotone increasing and commutes with g, we obtain

/«-!(*)   = fn+"(c)  ^ g(f*(c))  < g(x)  ^ g(fh+Kc))  g /n+*+2(c)   =g /»+2(x).
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Thus,/B_1(x) ^g(x) g/n+2(x), and our lemma follows.

Theorem 3. There exists a unique flow F on (a, b] such that £=/

and such that each Ft is continuously differentiable on (a, b\. Moreover,

if g is any continuously differentiable homeomorphism of (a, b] onto

itself such that g commutes withf, then there exists a real number t such

that Ft=g.

Proof. We define £((x)=$_1(^4'$(x)) for a<x^b. It is easy to

verify that each function Ft is a homeomorphism of (a, b ] onto itself.

Moreover, it is easy to prove that F,Ft = F,+t for all 5 and /, and

that £ is continuous. Thus £ is a flow on the interval (a, b].

Since $'(x) =-<£(x), it follows that F'tix)=At4>ix)/<j>iFtix)) and

hence Ft satisfies the differential equation £(i) on the interval (a, b).

Since / obviously satisfies £(1), it follows from Lemma 3 that £i=/.

Since £ =/ and £ is a flow, it follows that £( commutes with / for

each t. We now use Lemma 5 to obtain lim*,;, £/ (x) =A'. It follows

that Ft is differentiable at b, and that £/ (6) =A'. Thus each function

Ft has a continuous derivative on (a, b].

Let us now prove that the flow £ is unique. We observe that if ra

is a positive integer and g is a continuously differentiable homeo-

morphism of (a, b] onto itself for which gn=f, then

/'(*) = g'ign-1ix))g'ign~iix)) ■ ■ ■ g'ix).

If we let x tend to b, it is easy to see that we obtain

Mb) = ig'ib))*.

It follows that g satisfies the equation £(l/ra). Now let G be any

flow of continuously differentiable functions which satisfies Gi=f.

We see that Ci/„ and £/„ both satisfy £(l/») for each positive integer

ra and hence Gi/„ = £i/n. It follows that Gr = £ for every rational

number r. Since flows are continuous in both variables, G((x) = £(x)

for all real t and all x in the interval ia,b]. Therefore £ is unique.

Now suppose that g is a continuously differentiable homeomor-

phism of (a, b] onto itself and that g commutes with /. It follows

from Corollary 1 that g'ib) ^0. Thus, since g is order preserving,

g'ib)>0 and there exists a real number / such that At = g'ib). It fol-

lows from Theorem 2 that g satisfies the differential equation £(<),

and since Ft also satisfies £(<), Lemma 3 implies that Ft = g.

It is obvious that we may extend the domain of / and of the

functions Ft to the closed interval [a, b] by defining £(a) =a, and we

shall then obtain a flow £ on [a, 6]. However, as is shown by the fol-

lowing example, it is not necessarily true that each of the functions
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Ft will have a derivative at a, even though / has a derivative at a.

Example. Let g(x) =4x/(3x + l) for O^x^l. Next define a func-

tion/such that/(x)=2x for 0^x^1/3; f(x) =g(x) for l/2^xgl;

f(x) arbitrary for 1/3^x^1/2, subject only to the requirement that

/ satisfy the conditions (i)-(v) listed at the beginning of §3. It is

easily seen that it is possible to define such a function /. Theorem 3

implies that there exist flows G and F such that Gi =g, Fi =/ and, all

of the functions Ft and Gt are continuously differentiable on (0, l].

If one makes use of the uniqueness of G, it is easily verified that

G«(x)=4'x/((4'-l)x-|-l). Since g(x) =f(x) for 1/2^x^1, it is easily
seen that Gi/2 and Fi/2 satisfy the same differential equation on the

interval l/2gxgl. It follows from Lemma 3 that Fi/2(x) =Gi/2(x) for

l/2^xgl, and we use this fact to compute Fi/2(l/2) =2/3. Next we

define points po, pi, p2, • • • by letting p0 = l/2, pi = l/3, and

pn = F-i(pn-2) ior n^2. Since Fi,2(po)=2/3 = Fi(pi), we obtain

Fi/2(pi) —po. It is easy to prove by induction that Fi/i(p„) =pn-i for

every positive integer n. Since F_i(x) =x/2 for 0^x^1/2, it is easy

to compute the values of the numbers pn, and to verify that the

difference quotient (Fi/2(pn) — Fi/2(0))/(p„ — 0) is equal to 3/2 if n is

odd and is equal to 4/3 if n is even. Thus Fi/2 does not have a

derivative at 0.

This example demonstrates that it is possible to have a function /

which is continuously differentiable on the closed interval [a, ft] and

which satisfies conditions (i)-(v) on the half-open interval (a, ft], but

which cannot be embedded in a flow of functions that are con-

tinuously differentiable on the closed interval [a, ft].

We do, however, have the following result.

Theorem 4. If f is continuously differentiable over the closed in-

terval [a, ft] and satisfies (i)-(v) on (a, ft], then the set G of all con-

tinuously differentiable order preserving homeomorphisms g of [a, ft]

onto itself for which g commutes with f forms a group which is isomorphic

to either the group of real numbers or the group of integers.

Proof. We use Theorem 3 to obtain a flow F on [a, ft] such that

each of the functions Ft has a continuous derivative on (a, ft], and

Fi=f. It follows from Theorem 3 that if gEG, then there exists a

real number t such that Ft — g. We let S be the set of all real numbers

t for which FtEG. If we use the fact that F/+,(x) = F/ (F,(x))F! (x)
ior a<x<b, it is easy to see that if t and 5 are members of 5 then

t+s is also a member of 5. Moreover, if t is in 5 then — t is in 5. Thus

S is a subgroup of the reals. It is not difficult to prove that G is a

group which is isomorphic to S, and consequently our theorem is
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proved if we can show that either 5 is the set £ of all real numbers or

else 5 is a nondegenerate discrete subgroup of £.

We observe that 5 is nondegenerate since IGS. Now assume that

S is isomorphic to neither £ nor the group of integers. It then follows

that both 5 and R — S are dense in £, and this implies that £ — 5 is

uncountable. We shall now show that this is impossible. In order to

accomplish this, we define ut to be the lower derivate of Ft at a, and

we define vt to be the upper derivate of Ft at a. It is easily seen that

if s<t, then £„(x) <£(x) for a<x<b, and it follows that if s<t then

u,^=ut and vs^vt. Now let r and t be members of £ — 5, r<t. Since

5 is dense in £, there exists sGS such that r<s<t. We see that

ur<vr^v, = u,^ut<vt. Thus, by defining /(/) to be the open interval

iut, vt) for each tGR — S, we obtain a one-to-one function L that maps

R — S onto a set of mutually exclusive open intervals. This implies

that R — S is countable, and we have a contradiction.

We conclude by listing two unsolved problems that are of interest.

Problem 1. Find conditions on f that are necessary and sufficient

for S=R, where S and R are the sets defined in the proof of Theorem 4.

Problem 2. Replace condition (v) on f by a weaker condition.

The solution of these problems would constitute a major step

toward obtaining necessary and sufficient conditions that it be pos-

sible to embed a continuously differentiable homeomorphism (having

arbitrarily many fixed points) of an interval onto itself in a flow of

continuously differentiable homeomorphisms.
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