LAPLACE SERIES AND SETS OF
LOGARITHMIC CAPACITY ZERO

WALTER RUDIN

In the principal theorems of [2] and [3] sets of capacity zero
(“capacity” will mean “logarithmic capacity” in this note) appear in
the hypotheses. More specifically, conditions like finiteness of general-
ized Laplacians or of Poisson sums are assumed to hold everywhere
except possibly on a closed set of capacity zero; these sets play the
role of sets of uniqueness. The present note will show that the con-
clusions of these theorems become false if the sets of capacity zero
are replaced by any larger class of closed sets.

We begin with the following known theorem [6, p. 84].

THEOREM A. If e is a plane compact set of positive capacity, then
there exists a positive measure u, concentrated on e, such that the potential

(1) o(z) = f log | ¢ — 2| du(s)

is continuous in the whole plane.

By a measure we mean a finite real-valued (not necessarily non-
negative) completely additive set function defined for all Borel sets.

Since v is subharmonic in the plane and harmonic in the comple-
ment of e, it follows that Theorems I and II of [2] become false if
exceptional sets of positive capacity are admitted.

As z— o, y(z) differs from u(e)-log |z| by a bounded harmonic
function. To construct a nonconstant function v of the form (1) which
is also regular at infinity, we take two disjoint closed subsets e; and e,
of e, both of positive capacity, and then choose positive measures u;
concentrated on e; (¢=1, 2) such that the associated potentials v; are
continuous in the plane, and such that pi(e1) =pa(es). If uw=p;—pus,
then u(e) =0, and

@) ”(z) = f log | £ — 2| du(t) = 0(2) — u(2)

has the desired properties.

We now turn to series of spherical surface harmonics ¥, (P), where
P denotes a point of the surface S of the unit sphere in Euclidean
3-space. The notation and nomenclature will be the same as in [3],
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and for the sake of brevity we shall not repeat it all.

THEOREM B. Let E be a closed set of positive capacity on S. There
exists a series Do Y.(P) with the following properties:

(i) 2or Y.(P) does not vanish identically, but for every P in S—E
the series is (C, 1)-summable to 0 and Riemann-summable to 0.

(i) — Dor Ya(P)/n(n+1) is the Laplace series of a continuous func-
tion F on S.

(iii) If, in addition, E is such that every diameter of S has either both
or none of its end points in E, then, for every P in S—E and for every
E>1/2, D¢ Ya(P) is (C, k)-summable to 0.

Consequently closed sets Z of positive capacity cannot be admitted
in the hypotheses of Theorems 2.6 and 2.7 of [3].

ProoF. Let N be a point in S—E, and project S stereographically
on the plane through the center of .S, with NV as center of projection,
taking E into a plane set e of positive capacity. If P and Q on S
correspond to z and ¢ in the plane and if V(P)=uv(z)/2m, where v(2)
is given by (2), then V is continuous on S and harmonic in S— E; also,
if PQ denotes the shorter great circle arc on S between P and Q, we
have

sin (NP/2) sin (NQ/Z)} = —log | ¢ — 2|
sin (PQ/2) " |

as is easily verified by considering the singularities of the two func-
tions, and their harmonic character.

Let A be the measure (concentrated on E) obtained by transplant-
ing u to S by means of our projection. Then

() K(P,Q) =log {

1
(4) V) = - fE K(P, 0)dNQ) (P on S).

Recalling that A(E) =0, (3) shows that V(P) differs from
1

(5) F(P) = 2_f log sin (PQ/2)d\(Q) (P onlS)
TJE

by a constant (we draw the reader’s attention to the analogy between
(5) and the function Qf defined in [3, p. 293]). The function F has the
following properties:

(6) F is continuous and not constant on S;

(7) F is harmonic in S—E;

(8) [[sF(P)dP =0, since N(E)=0.

Now define Y,(P) (r=1) by the requirement that
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3 Vu(P)/n(n + 1)

be the Laplace series of F; this is possible by (8) and implies

Y.(P)  2n+1
O o 1) = f F(Q)Pn(cos PQ)AQ (PonsS,n = 1)

where P, is the Legendre polynomial of degree »n. Substituting (5)
into (9) and reversing the order of integration, we obtain (compare
[3, Theorem 5.2])

2n+1

(10) Y.(P) = f Pa( cos PQ)AN(Q) (n 2 0).

In other words, ».¢ Y.(P) is the Laplace-Stieltjes series of the
measure N. Note that Y, is defined by (10), and that Y,=

By (7), 2.¢ Y.(P) is Riemann-summable to 0 in S—E.

Let s®(0) be the nth Cesiro mean of order k of the series

i (2n 4+ 1) P,(cos 6).

n=0

For 1/2<k=<1 and 0<0<, it is known that [1, p. 277]

(11) @) < Aw' 6 F(sing) ™"
Also [1, p. 274]
(12) s ()] <2 (r/2 <6 < m).

By (10), the (C, k)-means of Y ¢ V.(P) are equal to

(k)

(13) o (p) = f s (PQ)ANQ).

For P in S—E, let E* be the set of all Q in E such that PQ<=-
Since every single point has N-measure zero, we may replace E by E*
in (13); taking =1, (11) and (12) show that s{’(PQ)—0 boundedly
as n— o, for Q in E* Consequently ¢{?(P)—0, and part (i) of the
theorem follows.

Part (iii) is proved similarly if we note that for some § >0 we have
< PQ=m—6 for every Q in E, and apply (11).

We conclude with an analogue of a theorem of Salem and Zygmund
[4, p. 25]; compare also [5, p. 584].
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TueorREM C. If E is a closed subset of S, the following statements are
equivalent:

(a) Thke capacity of E is positive.

(b) There exists a measure N\, concentrated on E and not identically
zero, whose Laplace-Stieltjes series is 3 o Yn(P), such that

S VP + 1)

is the Laplace series of a continuous function.
(c) Same as (b), with “continuous” replaced by “bounded.”

Proor. We have proved above that (a) implies (b), and (b) obvi-
ously implies (c). If (c) holds and Y,.(P) is given by (10) then the
function F whose Laplace series is — 2 V.(P)/n(n-+1) is given by
(5). Since F is bounded, harmonic, and not constant in S—E, the
capacity of E cannot be zero. Hence (c) implies (a).
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