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In the principal theorems of [2] and [3] sets of capacity zero

("capacity" will mean "logarithmic capacity" in this note) appear in

the hypotheses. More specifically, conditions like finiteness of general-

ized Laplacians or of Poisson sums are assumed to hold everywhere

except possibly on a closed set of capacity zero; these sets play the

role of sets of uniqueness. The present note will show that the con-

clusions of these theorems become false if the sets of capacity zero

are replaced by any larger class of closed sets.

We begin with the following known theorem [6, p. 84].

Theorem A. If e is a plane compact set of positive capacity, then

there exists a positive measure fi, concentrated on e, such that the potential

(1) v(z) = J log I f - z I &p(i)

is continuous in the whole plane.

By a measure we mean a finite real-valued (not necessarily non-

negative) completely additive set function defined for all Borel sets.

Since v is subharmonic in the plane and harmonic in the comple-

ment of e, it follows that Theorems I and II of [2] become false if

exceptional sets of positive capacity are admitted.

As z—»°°, v(z) differs from 11(e)-log \z\ by a bounded harmonic

function. To construct a nonconstant function v of the form (1) which

is also regular at infinity, we take two disjoint closed subsets d and e2

of e, both of positive capacity, and then choose positive measures /*,-

concentrated on e< (i = 1, 2) such that the associated potentials Vi are

continuous in the plane, and such that ni(ei) = pt2(e2). If /i=(ii — ju2,

then 11(e) =0, and

(2) V(Z)   = J   log   I f - 2 I rfyu(f)   = Vi(z)  - Vi(z)

has the desired properties.

We now turn to series of spherical surface harmonics YH(P), where

P denotes a point of the surface 5 of the unit sphere in Euclidean

3-space. The notation and nomenclature will be the same as in [3],
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and for the sake of brevity we shall not repeat it all.

Theorem B. Let E be a closed set of positive capacity on S. There

exists a series zZo   Yn(P) with the following properties:

(i) zZi Yn(P) does not vanish identically, but for every P in S—E

the series is (C, l)-summable to 0 and Riemann-summable to 0.

(ii) — zZi Yn(P)/n(n+1) is the Laplace series of a continuous func-

tion F on S.

(iii) //, in addition, E is such that every diameter of S has either both

or none of its end points in E, then, for every P in S — E and for every

ft > 1/2, zZo   Yn(P) is (C, k)-summable to 0.

Consequently closed sets Z of positive capacity cannot be admitted

in the hypotheses of Theorems 2.6 and 2.7 of [3].

Proof. Let N he a point in S—E, and project 5 stereographically

on the plane through the center of S, with N as center of projection,

taking E into a plane set e of positive capacity. If P and Q on 5

correspond to z and f in the plane and if V(P) =v(z)/2ir, where viz)

is given by (2), then Fis continuous on S and harmonic in S—E; also,

if PQ denotes the shorter great circle arc on 5 between P and Q, we

have

™      r,i>™      ,       (sin jNP/2) sin (NQ/2)\ .
(3) w®-1*!—^m—} = -log|r-21'

as is easily verified by considering the singularities of the two func-

tions, and their harmonic character.

Let X be the measure (concentrated on E) obtained by transplant-

ing p to 5 by means of our projection. Then

(4) V(P) = - — f K(P, Q)dX(Q) (P on S).
2t J E

Recalling that \(E) =0, (3) shows that V(P) differs from

(5) F(P) = — f log sin (PQ/2)dX(Q) (P on S)
2-K J E

by a constant (we draw the reader's attention to the analogy between

(5) and the function fi/defined in [3, p. 293]). The function Fhas the

following properties:

(6) F is continuous and not constant on S;

(7) F is harmonic in S — E;

(8) ffsF(P)dP = 0, since X(E)=0.
Now define Yn(P) (ra ̂  1) by the requirement that
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- Z Yn(P)/n(n + 1)
1

be the Laplace series of F; this is possible by (8) and implies

Yn(P)        2n+l  C C
(9) -    ,   \ '    = —- F«?)Pn(cos PQ)dQ     (P on S, n = 1)

n(n + 1) 47r    J J s

where P„ is the Legendre polynomial of degree n. Substituting (5)

into (9) and reversing the order of integration, we obtain (compare

[3, Theorem 5.2])

(10) Yn(P) = -^-— f Pn( cos PQ)d\(Q) (n ^ 0).
47T       J B

In other words, Zo" Yn(P) is the Laplace-Stieltjes series of the

measure X. Note that F0 is defined by (10), and that F0 = 0.

By (7), Zo° Yn(P) is Riemann-summable to 0 in S—E.

Let s®(6) be the nth Cesaro mean of order k of the series

00

Z (2» + l)Pn(cos 8).
n-0

For 1/2<£^1 and O<0<t, it is known that [l, p. 277]

(11) |,.»|   <^^1/2-^-1-%in0)-1/2.

Also [1, p. 274]

(12) | sn"(e) I   = 2 (x/2 =6 g 7P).

By (10), the (C, &)-means of Zo° Yn(P) are equal to

(13) o-n\p) =1 f snk)(PQ)d\(Q).

For P in S-E, let E* be the set of all Q in E such that PQ<w
Since every single point has X-measure zero, we may replace E by E*

in (13); taking k = l, (11) and (12) show that s™(PQ)^>0 boundedly

as n—>=°, for Q in E*. Consequently ^(P)—>0, and part (i) of the

theorem follows.

Part (iii) is proved similarly if we note that for some 6 > 0 we have

S^PQ—^w — 8 for every Q in E, and apply (11).

We conclude with an analogue of a theorem of Salem and Zygmund

[4, p. 25]; compare also [5, p. 584].
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Theorem C If E is a closed subset of S, the following statements are

equivalent:

(a) The capacity of E is positive.

(b) There exists a measure X, concentrated on E and not identically

zero, whose Laplace-Stieltjes series is zZo Yn(P), such that

00

- E Fn(P)/ra(ra + 1)
i

is the Laplace series of a continuous function.

(c) Same as (b), with "continuous" replaced by "bounded."

Proof. We have proved above that (a) implies (b), and (b) obvi-

ously implies (c). If (c) holds and Y„(P) is given by (10) then the

function F whose Laplace series is — zZi Fn(P)/ra(ra + l) is given by

(5). Since F is bounded, harmonic, and not constant in S — E, the

capacity of E cannot be zero. Hence (c) implies (a).
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