The asymptotic representation of a solution $u_{j, k}(x, \lambda)$ given by the theorem does not in general hold over all of R_{x} but only on the image of $\Xi_{j, k}$.

References

1. G. D. Birkhoff, On the asymptotic character of the solution of certain differential equations containing a parameter, Trans. Amer. Math. Soc. vol. 9 (1908) pp. 214-231.
2. C. C. Hurd, Asymptotic theory of linear differential equations singular in the variable of differentiation and in a parameter, Tôhoku Math. J. vol. 44 (1938) pp. 243274.
3. N. D. Kazarinoff and R. W. McKelvey, Asymptotic solution of differential equations in a domain containing a regular singular point, Canadian Journal of Mathematics vol. 8 (1956).
4. R. E. Langer, On the asymptotic solution of differential equations, with reference to the Stokes' phenomenon about a singular point, Trans. Amer. Math. Soc. vol. 37 (1935) pp. 397-416.

Purdue University

ON STIELTJES INTEGRATION

E. J. MCSHANE

Among the theorems concerning the Stieltjes integral there are two which are established for integrals in one-dimensional space, but not in spaces of more than one dimension. These are (I) if $\int f d g$ exists, f and g have no common discontinuity; (II) if $\int f d g$ exists, and g is of bounded variation and t is its total-variation function, then $\int f d t$ exists. The method of proof for one dimension ${ }^{1}$ does not extend to higher dimensions. In this note extensions of these theorems to n dimensions are proved for the ordinary Stieltjes integral and for a modified form of it. ${ }^{2}$

1. Definitions. Throughout this note we shall assume that f is real-valued and bounded on a set D in the space R^{n}, and that g is real-valued on R^{n}. For each interval $I \subset R^{n}$ we define $\Delta_{g} I$ in the usual way, as the sum of 2^{n} terms each of which is ± 1 times the value of g at a vertex of I. If B is a closed interval contained in D, an $e x$ tended partition of B is a set $P=\left\{I_{1}, I_{2}, \cdots, I_{k}, x_{1}, x_{2}, \cdots, x_{k}\right\}$ in

[^0]which the I_{j} are nonoverlapping closed intervals whose union contains B, and for each j the point x_{j} is in $D \cap I_{j} . P$ is a restricted partition of B if it is an extended partition and $U I_{j}=B$. The mesh of P is the greatest of the diameters of the I_{j} in P. For each extended partition P, define
$$
S(P)=\sum_{j=1}^{k} f\left(x_{j}\right) \Delta_{\theta}\left(I_{j} \cap B\right)
$$

If this approaches a limit as the mesh of P approaches 0 , the limit is the modified Stieltjes integral of f with respect to g over B, and we denote it simply by $\int_{B} f(x) d g(x)$. If $S(P)$ has a limit as mesh $P \rightarrow 0$ subject to the condition that P is a restricted partition, the limit is the (ordinary) Stieltjes integral of f with respect to g over B.

Whenever the modified integral exists so does the ordinary integral, and the two are equal (the reason for defining the modified integral is that it possesses some desirable properties which the ordinary integral lacks). But it is easy to see that if $f=(f(x): x \in D)$, the ordinary Stieltjes integral of f with respect to g over B is identical with the modified Stieltjes integral of its restriction $f_{B}=(f(x): x \in B)$ with respect to g over B.
2. Two lemmas. If $\int_{B} f(x) d g(x)$ exists, to each $\epsilon>0$ corresponds $\delta(\epsilon)>0$ such that if mesh $P<\delta(\epsilon)$, then $\left|S(P)-\int_{B} f(x) d g(x)\right|<\epsilon$. Let us define $O(I)$ to be the oscillation of f on $I \cap D$ if this is nonempty, and to be 0 if $I \cap D$ is empty. Since in any finite set of nonoverlapping closed intervals of diameter $<\delta$ those which meet D can be included in a partition of mesh $<\delta$, we readily establish the following lemma.

Lemma 1. If the (modified Stieltjes) integral $\int_{B} f(x) d g(x)$ exists, and $(\delta(\epsilon): \epsilon>0)$ is defined as above, and $\epsilon>0$, and I_{1}, \cdots, I_{k} are nonoverlapping closed intervals of diameter $<\delta(\epsilon / 2)$, then

$$
\sum_{j=1}^{k} O\left(I_{j}\right)\left|\Delta_{0}\left(I_{j} \cap B\right)\right|<\epsilon .
$$

In order to save verbosity, by a hyperplane we shall always mean a set $\left\{x: x^{(i)}=C\right\}$, where i is one of the numbers $1, \cdots, n$ and C is real. We define a sequence C_{1}, C_{2}, \cdots of integers recursively by the relations

$$
\begin{array}{r}
C_{0}=2, C_{n}=2+C_{0}+\binom{n}{1} C_{1}+\binom{n}{2} C_{2}+\cdots+\binom{n}{n-1} C_{n-1} \\
(n=1,2,3, \cdots) .
\end{array}
$$

Lemma 2. Let є be a positive number, and let I be a closed interval such that for each closed interval $I^{\prime} \subset I, O\left(I^{\prime}\right)\left|\Delta_{0}\left(I^{\prime} \cap B\right)\right|<\epsilon$. Let I be
subdivided by k ($k \leqq n$) mutally perpendicular hyperplanes into nonoverlapping intervals $I_{1}, I_{2}, \cdots, I_{2^{k}}$ whose intersection contains a point x_{0}. Then

$$
O(I)\left|\Delta_{g}\left(I_{j} \cap B\right)\right|<C_{k \epsilon} \quad\left(j=1,2, \cdots, 2^{k}\right)
$$

For brevity we write $G\left(I_{j}\right)$ for $\Delta_{o}\left(I_{j} \cap B\right)$.
Without loss of generality we may assume that x_{0} is the origin and that the k cutting hyperplanes are those defined by the k equations $x^{(i)}=0(i=1, \cdots, k)$. For each I_{j}, let the "signature" $\sigma\left(I_{j}\right)$ be the set of integers i in $\{1,2, \cdots, k\}$ for which the i th coordinate of the center of I_{j} is negative. If $\sigma=\sigma\left(I_{j}\right)$, we can use $I(\sigma)$ as another name for I_{j}. The number of elements in σ will be denoted by $|\sigma|$.

It is easily seen that because x_{0} is in each I_{j}, the oscillation of f on some I_{j} must be at least $O(I) / 2$. By reversing some axes if necessary we can bring it about that the interval $I(\phi)$, whose signature is the empty set, has this property.

We now establish inductively
$\left.{ }^{*}\right)$ If $1 \leqq j \leqq 2^{k}$, and $\sigma=\sigma\left(I_{j}\right)$, then

$$
O(I)\left|G\left(I_{j}\right)\right|<C_{|\sigma| \epsilon} .
$$

First suppose σ empty, so that $I_{j}=I(\phi)$. Then $O\left(I_{j}\right) \geqq O(I) / 2$, so

$$
O(I)\left|G\left(I_{j}\right)\right| \leqq 2 O\left(I_{j}\right)\left|G\left(I_{j}\right)\right|<2 \epsilon=C_{0} \epsilon
$$

Next suppose statement $\left(^{*}\right)$ true for $\left|\sigma\left(I_{j}\right)\right|<h$; we prove it true if $\left|\sigma\left(I_{j}\right)\right|=h$. There are 2^{h} intervals I_{m} in the set $\left\{I_{1}, \cdots, I_{2^{k}}\right\}$ with $\sigma\left(I_{m}\right) \subset \sigma\left(I_{j}\right)$; for simplicity we may assume the notation chosen so that these are $I(\phi)=I_{1}, I_{2}, \cdots, I_{2^{b}}=I_{j}$. The union of these intervals is a closed interval I^{*}, and

$$
G\left(I_{j}\right)=G\left(I^{*}\right)-\sum_{i=1}^{i-1} G\left(I_{i}\right)
$$

Also $O\left(I^{*}\right) \geqq O\left(I_{1}\right) \geqq O(I) / 2$. Letting \sum^{\prime} denote the sum over all proper subsets of $\sigma\left(I_{j}\right)$, we have

$$
\begin{aligned}
O(I)\left|G\left(I_{i}\right)\right| & \leqq O(I)\left|G\left(I^{*}\right)\right|+\sum_{i=1}^{i-1} O(I)\left|G\left(I_{i}\right)\right| \\
& \leqq 2 O\left(I^{*}\right)\left|G\left(I^{*}\right)\right|+\sum^{\prime} C_{|\sigma| \epsilon} \\
& <2 \epsilon+\sum_{i=0}^{h-1}\binom{h}{i} C_{i \epsilon} \\
& =C_{h} \epsilon
\end{aligned}
$$

So $\left(^{*}\right)$ holds for $\left|\sigma\left(I_{j}\right)\right|=h$, and by induction holds for $0 \leqq\left|\sigma\left(I_{j}\right)\right| \leqq k$. Since $C_{0} \leqq C_{1} \leqq \cdots \leqq C_{k}$, the lemma is established.
3. A theorem on discontinuities. The interval function Δ_{g} is continuous at a point x if to each $\epsilon>0$ corresponds $\delta>0$ such that whenever I is a closed interval of diameter less than δ and having $x \in I$, $\left|\Delta_{g} I\right|<\epsilon$.

Theorem I. If the modified Stieltjes integral $\int_{B} f(x) d g(x)$ exists, and x_{0} is a point of B at which $f=(f(x): x \in D)$ is discontinuous, then the interval function $\left(\Delta_{g}(I \cap B): I\right.$ an interval) is continuous at x_{0}.

Let ϵ be the oscillation of f at x_{0}, and let γ be positive. By Lemma 1 , there exists $\delta>0$ such that for every closed interval I^{*} of diameter less than $2 \delta, O\left(I^{*}\right)\left|\Delta_{g}\left(I^{*} \cap B\right)\right|<\gamma \epsilon$. Let I be a closed interval of diameter less than δ with $x_{0} \in I$; let V be the vertex of I farthest from x_{0}, and C the vertex of I farthest from V. Define I^{*} to be the closed interval with center C and a vertex at V; its diameter is twice that of I, hence less than 2δ. Also, except in the trivial case of degenerate I, x_{0} is interior to I^{*}, so $O\left(I^{*}\right) \geqq \epsilon$. The n hyperplanes through C divide I^{*} into 2^{n} nonoverlapping closed intervals having C in common, and I is one of these. By Lemma 2,

$$
\epsilon\left|\Delta_{g}(I \cap B)\right| \leqq O\left(I^{*}\right)\left|\Delta_{g}(I \cap B)\right|<C_{n} \gamma \epsilon
$$

so $\left|\Delta_{g}(I \cap B)\right|<C_{n} \gamma$. Since γ is an arbitrary positive number this completes the proof.

Corollary. If this (ordinary) Stieltjes integral $\int_{B} f(x) d g(x)$ exists, there is no point of B at which the interval-function $\left(\Delta_{0}(I \cap B): I\right.$ an interval) and the restriction of f to $B, f_{B}=(f(x): x \in B)$ are both discontinuous.
4. Interval-functions of bounded variation. If Δ_{g} is of bounded variation over B, there exists a function t in R^{n} such that for each closed interval $I \subset B, \Delta_{t} I$ is the total variation of Δ_{g} over I.

Theorem II. Let f be a bounded function on a domain D in R^{n}, g a function on R^{n} such that Δ_{g} is of bounded variation on a closed interval $B \subset D$, and t a function on R^{n} such that $\Delta_{t} I$ is the total variation of Δ_{0} over I for each closed interval $I \subset B$. If the (modified) Stieltjes integral $\int_{B} f(x) d g(x)$ exists, so does $\int_{B} f(x) d t(x)$.

Write $G(I)$ for $\Delta_{o}(I \cap B)$ and $T(I)$ for $\Delta_{t}(I \cap B)$, and let M be the upper bound for $|f(x)|$ on D. Let $(\delta(\epsilon): \epsilon>0)$ be defined as before Lemma 1, and let ϵ be a positive number. There exists a finite set of
nonoverlapping closed intervals J_{1}, \cdots, J_{q} whose union is B such that

$$
\sum_{i=1}^{q}\left|G\left(J_{i}\right)\right|>T(B)-\epsilon
$$

Without loss of generality we may suppose that the J_{i} are obtained by cutting B by hyperplanes, and have diameter less than $\delta(\epsilon / 2)$.

Let δ^{\prime} be a positive number less than the least of the edges of the intervals J_{1}, \cdots, J_{q}. We now investigate an extended partition $P=\left\{I_{1}, \cdots, I_{m}, x_{1}, \cdots, x_{m}\right\}$ of mesh less than δ^{\prime}. For each I_{h}, the nonempty intervals in the set $I_{h} \cap J_{1}, \cdots, I_{h} \cap J_{q}$ are obtained by cutting I_{h} by hyperplanes, and have a common point $x_{h}{ }^{\prime}$. If we define

$$
c_{h}=\sup \left\{O\left(I^{\prime}\right)\left|G\left(I^{\prime}\right)\right|: I^{\prime} \subset I_{h}\right\}
$$

by Lemma 1 we have $c_{1}+\cdots+c_{m} \leqq \epsilon$. By Lemma 2

$$
O\left(I_{h}\right)\left|G\left(I_{h} \cap J_{i}\right)\right| \leqq C_{n} c_{h} \quad(i=1, \cdots, q)
$$

and at most 2^{n} intervals J_{i} have points in common with I_{h}, so

$$
\sum_{i} O\left(I_{h}\right)\left|G\left(I_{h} \cap J_{i}\right)\right| \leqq 2^{n} C_{n} c_{h}
$$

Then

$$
\begin{aligned}
\sum_{h} O\left(I_{h}\right) T\left(I_{h}\right) & =\sum_{i, h} O\left(I_{h}\right) T\left(I_{h} \cap J_{i}\right) \\
& \leqq \sum_{h} 2^{n} C_{n} c_{h}+\sum_{i, h} 2 M\left\{T\left(I_{h} \cap J_{z}\right)-\left|G\left(I_{h} \cap J_{\imath}\right)\right|\right\} \\
& <\left(2^{n} C_{n}+2 M\right) \epsilon
\end{aligned}
$$

Again by Lemma 1,

$$
\sum_{i} O\left(J_{i}\right)\left|G\left(J_{i}\right)\right|<\epsilon
$$

whence

$$
\begin{aligned}
\sum_{i} O\left(J_{i}\right) T\left(J_{i}\right) & \leqq \sum_{i} O\left(J_{i}\right)\left|G\left(J_{i}\right)\right|+2 M \sum_{i}\left\{T\left(J_{i}\right)-\left|G\left(J_{i}\right)\right|\right\} \\
& <(2 M+1) \epsilon
\end{aligned}
$$

Let ξ_{i} be the center of J_{i}. Both x_{h} and x_{h}^{\prime} are in I_{h}, so $\mid f\left(x_{h}\right)$ $-f\left(x_{h}^{\prime}\right) \mid \leqq O\left(I_{h}\right)$; and unless $I_{h} \cap J_{i}$ is empty both ξ_{i} and x_{h}^{\prime} are in J_{i}, whence $\left|f\left(\xi_{i}\right)-f\left(x_{h}^{\prime}\right)\right| \leqq O\left(J_{i}\right)$. Hence

$$
\begin{aligned}
& \left|\sum_{h} f\left(x_{h}\right) T\left(I_{h}\right)-\sum_{i} f\left(\xi_{i}\right) T\left(J_{i}\right)\right| \\
& \quad \leqq\left|\sum_{h}\left[f\left(x_{h}\right)-f\left(x_{h}^{\prime}\right)\right] T\left(I_{h}\right)\right|+\left|\sum_{i, h}\left[f\left(x_{h}^{\prime}\right)-f\left(\xi_{i}\right)\right] T\left(I_{h} \cap J_{i}\right)\right| \\
& \quad \leqq \sum_{h} O\left(I_{h}\right) T\left(I_{h}\right)+\sum_{i, h} O\left(J_{i}\right) T\left(I_{h} \cap J_{i}\right) \\
& \quad<\left(2^{n} C_{n}+4 M+1\right) \epsilon .
\end{aligned}
$$

If $P^{*}=\left\{I_{1}^{*}, \cdots, I_{l}^{*}, x_{1}^{*}, \cdots, x_{l}^{*}\right\}$ is any extended partition also of mesh less than δ^{\prime}, the same argument applies to it as to P, so

$$
\left|\sum_{h=1}^{m} f\left(x_{h}\right) T\left(I_{h}\right)-\sum_{j=1}^{l} f\left(x_{j}^{*}\right) T\left(I_{j}^{*}\right)\right|<2\left(2^{n} C_{n}+4 M+1\right) \epsilon
$$

By the Cauchy criterion the limit of the sum $\sum f\left(x_{h}\right) T\left(I_{h}\right)$ exists as mesh P tends to zero, and by definition this limit is $\int_{B} f(x) d t(x)$.

Corollary. If Δ_{g} is of bounded variation on B, and t is a function such that $\Delta_{t} I$ is the total variation of Δ_{0} on I for each closed interval $I \subset B$, and f is bounded and the (ordinary) Stieltjes integral $\int_{B} f(x) d g(x)$ exists, so does $\int_{B} f(x) d t(x)$.

University of Virginia

[^0]: Presented to the Society, April 16, 1955; received by the editors March 4, 1955.
 ${ }^{1}$ L. M. Graves, Theory of functions of real variables, McGraw-Hill, 1946, p. 263, Theorem 4, and p. 273, Theorem 14.
 ${ }^{2}$ E. J. McShane and T. A. Botts, A modified Riemann-Stieltjes integral, Duke Math. J. vol. 19 (1952) p. 293.

