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The asymptotic representation of a solution Uj,k(x, X) given by the

theorem does not in general hold over all of Rx but only on the image

of E/,*.
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ON STIELTJES INTEGRATION

E. J. MCSHANE

Among the theorems concerning the Stieltjes integral there are two

which are established for integrals in one-dimensional space, but not

in spaces of more than one dimension. These are (I) if ffdg exists, /

and g have no common discontinuity; (II) if ffdg exists, and g is of

bounded variation and t is its total-variation function, then ffdt

exists. The method of proof for one dimension1 does not extend to

higher dimensions. In this note extensions of these theorems to n

dimensions are proved for the ordinary Stieltjes integral and for a

modified form of it.2

1. Definitions. Throughout this note we shall assume that / is

real-valued and bounded on a set D in the space R", and that g is

real-valued on Rn. For each interval 1ER" we define A„I in the usual

way, as the sum of 2n terms each of which is +1 times the value of

g at a vertex of I. If B is a closed interval contained in D, an ex-

tended partition of B is a set P= {Ji, I2, • • • , Ik, Xi, x2, • • • , xk} in
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which the I¡ are nonoverlapping closed intervals whose union contains

B, and for each/ the point xy is in DC\Ij. P is a restricted partition of

B if it is an extended partition and U/y — B. The mesh of P is the great-

est of the diameters of the I,- in P. For each extended partition P,

define

s(P) = T,f^i)At(iir\B).
í=i

If this approaches a limit as the mesh of P approaches 0, the limit is

the modified Stieltjes integral oí f with respect to g over B, and we

denote it simply by fsf(x)dg(x). If S(P) has a limit as mesh P—K)

subject to the condition that P is a restricted partition, the limit is

the (ordinary) Stieltjes integral of/ with respect to g over B.

Whenever the modified integral exists so does the ordinary integral,

and the two are equal (the reason for defining the modified integral

is that it possesses some desirable properties which the ordinary

integral lacks). But it is easy to see that if /=(/(x):x£.D), the ordi-

nary Stieltjes integral of/ with respect to g over B is identical with

the modified Stieltjes integral of its restriction fB = (f(x) ixEB) with

respect to g over B.

2. Two lemmas. If fßf(x)dg(x) exists, to each e>0 corresponds

5(e)>0 such that if mesh P<5(e), then | S(P)-fBf(x)dg(x)\ <e. Let
us define 0(1) to be the oscillation of/ on IC\D if this is nonempty,

and to be 0 if IC\D is empty. Since in any finite set of nonoverlapping

closed intervals of diameter <5 those which meet D can be included

in a partition of mesh <5, we readily establish the following lemma.

Lemma 1. If the (modified Stieltjes) integral fBf(x)dg(x) exists, and

(ô(e):e>0) is defined as above, and e>0, and Ji, • • • , J* are non-

overlapping closed intervals of diameter   <5(e/2), then

¿Zo(ij)\Ag(ijnB)\ <e.

In order to save verbosity, by a hyperplane we shall always mean a

set {x:x(i) = C|, where i is one of the numbers 1, • • • , n and C is

real. We define a sequence G, C2, • • • of integers recursively by the

relations

Co= 2,C = 2+C0 + (")c1 + ri)c2+ ••• +(    n_   \cn-i

in = 1, 2, 3, • • ■ ).

Lemma 2. Let e be a positive number, and let I be a closed interval

such that for each closed interval I'El, Oil') \ AS(IT\B) \ <«. Let I be
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subdivided by k (k^n) mutally perpendicular hyperplanes into non-

overlapping intervals I\, I2, ■ ■ ■ , I2k whose intersection contains a point

Xq. Then

O(I)\A0(Ijr\B)\   <Ck*     (j= 1, 2, ■ • • , 2*).

For brevity we write G(I,) for A0(Ijr\B).

Without loss of generality we may assume that x0 is the origin and

that the k cutting hyperplanes are those defined by the k equations

x<v=0 (i = l, ■ • • , k). For each I¡, let the "signature" ff(Ij) be the

set of integers i in {1, 2, • • • , k} for which the îth coordinate of the

center of Ij is negative. If <r =o(I¡), we can use 1(a) as another name

for Ij. The number of elements in a will be denoted by \a\.

It is easily seen that because x0 is in each Ij, the oscillation of/ on

some Ij must be at least 0(I)/2. By reversing some axes if necessary

we can bring it about that the interval I((p), whose signature is the

empty set, has this property.

We now establish inductively

(*)  H lájá2*, and <x=a(Ij), then

0(/)|G(/,)|   <C,.|i.

First suppose a empty, so that Ij = I(<f>). Then 0(I3) = 0(I)/2, so

0(1) | G(Ij) |   = 20(1 à \ G(Ij) \   <2e = Cot.

Next suppose statement (*) true for |<r(7/)| <h; we prove it true

if |<r(7,-)| =h. There are 2* intervals Im in the set {h, ■ • • , I2h} with

o~(Im)E<t(Ij)\ f°r simplicity we may assume the notation chosen so

that these are I(d>) = Iu I2, • • • , I2h = I¡. The union of these intervals

is a closed interval /*, and

G(Ij) =G(I*)-2ZG(Ii)-
¿-i

Also 0(I*)=0(Ii) = 0(I)/2. Letting £' denote the sum over all

proper subsets of o~(Ij), we have

0(1) | G(Ij) |   = 0(1) | G(I*) |  + E 0(7) | G(Ii) |
¿=i

= 20(I*)\G(I*)\  +£'C|,|«

< 2«+L(  \Ctt

= Ch(.
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So (*) holds for | <r(7y) | = h, and by induction holds for 0 ̂  | <r(7y) | ^ k.

Since CoïsGa • ■ • ásC», the lemma is established.

3. A theorem on discontinuities. The interval function A„ is con-

tinuous at a point x if to each e>0 corresponds 5>0 such that when-

ever J is a closed interval of diameter less than 5 and having xEI,

|A,/| <6.

Theorem I. If the modified Stieltjes integral fBf(x)dg(x) exists, and

x0 is a point of B at which f=(f(x) :xED) is discontinuous, then the

interval function (Ag(If~}B):I an interval) is continuous at x0.

Let e be the oscillation of/ at x0, and let y he positive. By Lemma 1,

there exists 5>0 such that for every closed interval I* of diameter

less than 25, 0(7*)|Aa(I*r\B)\ <ye. Let 7 be a closed interval of

diameter less than 5 with x0£7; let V be the vertex of 7 farthest from

x0, and C the vertex of 7 farthest from V. Define 7* to be the closed

interval with center C and a vertex at V; its diameter is twice that of

7, hence less than 25. Also, except in the trivial case of degenerate 7,

x0 is interior to 7*, so 0(7*) 5: e. The n hyperplanes through C divide

7* into 2" nonoverlapping closed intervals having C in common, and

7 is one of these. By Lemma 2,

e\Ag(I^B)\   ^ 0(7*) | A „(7 H 73) |   <Cnye,

so |A„(7nv3)| <Cny. Since y is an arbitrary positive number this

completes the proof.

Corollary. If this (ordinary) Stieltjes integral fBf(x)dg(x) exists,

there is no point of B at which the interval-function (A0(IHiB):I an

interval) and the restriction of f to B, fB = (f(x) :xEB) are both discon-

tinuous.

4. Interval-functions of bounded variation. If A„ is of bounded

variation over B, there exists a function t in Rn such that for each

closed interval IEB, At7 is the total variation of A„ over 7.

Theorem II. Let f be a bounded function on a domain D in Rn, g a

function on Rn such that Ag is of bounded variation on a closed interval

BED, and t a function on Rn such that A(7 is the total variation of A0

over I for each closed interval IEB. If the (modified) Stieltjes integral

fBf(x)dg(x) exists, so does JBf(x)dt(x).

Write G(7) for Aa(IC\B) and 7/(7) for At(IC\B), and let M be the
upper bound for |/(x)| on D. Let (5(e) :e>0) be defined as before

Lemma 1, and let e be a positive number. There exists a finite set of
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nonoverlapping closed intervals J\, ■ • • , Jt whose union is B such

that

E I G(Ji) I   > T(B) - e.
t=i

Without loss of generality we may suppose that the /< are obtained

by cutting B by hyperplanes, and have diameter less than 5(e/2).

Let ô' be a positive number less than the least of the edges of the

intervals Ji, • • • , Jq. We now investigate an extended partition

P={li, • ■ ■ , Im, Xi, • • • , xm} of mesh less than 5'. For each Ih,

the nonempty intervals in the set Inr\Ji, • ■ • , 7An7g are obtained

by cutting Ih by hyperplanes, and have a common point x{ . If we de-

fine

ft-sup \0(V)\G(I')\ :7'C7A},

by Lemma 1 we have Ci+ • • • +cn = e. By Lemma 2

0(h) j G(h H Ji) I   Ú CnCk (i = 1, • • • , q),

and at most 2n intervals 7< have points in common with Ih, so

E 0(A) I G(7„ r> /<) i   á 2«Cnc,.
i

Then

}Z0(h)T(Ih) = 2Z0(h)T(hiMi)
h i,h

á E 2"CnCA + E 2M { T(Ih n /,) - I G(7A n 7.) | }

< (2"Cn + 2M)e.

Again by Lemma 1,

E0(7,)|G(7,)|   <€,
»

whence

£0(Ji)T(Ji) = E 0(A) I G(/0 I   + 2M E {T(Ji) - IG(Ji) | }
* » t

< (2M + 1)«.

Let £,• be the center of 7,-. Both xh and x/ are in Ih, so |/(xA)

~f(xh ) I á 0(7A) ; and unless hC^Ji is empty both £,■ and x* are in 7,-,

whence |/(fc)-/(*») | ^0(7,). Hence
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Z/(*»)r(/*)-X;/({,•) r(/4)

E [/(**) -f(*£)]Tih) + ¿ZU(*¿)-m\T(hr\ii)
i.h

Ú Y,0(h)T(Ih) + T,OiJi)T(IknJi)
h i,h

< (2»C„ + 4M+ l)e.

If P*= {7i*, • • • , I*, x*, • • • , x*} is any extended partition also

of mesh less than 5', the same argument applies to it as to P, so

E fixh)T(h) - Ë f(**)TiI*j) |   < 2(2"Cn + 4M+ !)•.
A-l )'=!

By the Cauchy criterion the limit of the sum ¿2f(xn)F(h) exists as

mesh P tends to zero, and by definition this limit is JBf(x)dt(x).

Corollary. If Ag is of bounded variation on B, and t is a function

such that AJ is the total variation of Ag on I for each closed interval

IEB, and f is bounded and the (ordinary) Stieltjes integral fBf(x)dg(x)

exists, so does fBf(x)dt(x).
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