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1. Introduction. The subject of this note is the asymptotic solution,

for large absolute values of a complex parameter X, of the differential

equation of the type

d2w dw
(I)       (z - zo)' —- + X(z - Zo)'/2Pi(3, X) — + \2P2(z, \)w = 0,

öz2 dz

with v — 2 a positive real constant. The complex variable z is to be

confined to a bounded neighborhood of the irregular singular point

Zo. The analogous problem for a class of wth order differential equa-

tions, containing (1) for integral ^5:6, has been discussed by Hurd

[2]. His analysis is somewhat complicated, and it appears that a

clearer and more direct investigation of the asymptotic solutions of

(1) than is attainable by the methods applied in [2] is possible. This

is accomplished largely by adapting the formal structure of the

analysis [3] used in the discussion of (1) for v = 2.

The case v>2 discussed here resembles, in some respects, that

when v<2. In order to contrast the case v<2 with the present one,

we first outline the nature of our results.

Suitable changes of the variables in (1) reduce it to the form

(2) Liu) =0,       L = d2/dx2 - X2Q(x, X).

By way of hypothesis it is to be assumed that the function x"Q(x, X)

is single-valued and analytic in x throughout a bounded region R

containing the origin and in X at infinity. The important restriction

is made that x"Qix, 00) is nonzero in R with X chosen so that

x'Q(x, oo)|I=o = l- A further hypothesis upon R is stated in §3.

Let n be any non-negative integer. It will be shown that a function

£(x, X) may be defined and a pair of polynomials in 1/X,

A   a+j(x)
(3) ¿t-íaUÍ-E-—1»

0        X'
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determined such that the expressions

(4) y±n(x, X) = e^A±n(x, X)

approximate solutions of (2) with an error of e±£0(X-n_1).2 The func-

tions a±j(x) are determined by means of a simple algorithm so that

the results given here are more explicit than those of [2]. This

algorithm is essentially the same as that used by Birkhoff in 1908 [l ]

in the treatment of (1) for v = 0. The decisive difference is in the choice

of £(x, X). Moreover, if one were to determine the asymptotic repre-

sentations of the solutions of (2) in accordance with the procedures

developed by Birkhoff [l] and Langer [4], among others, forv<2 or

by the analysis referred to in [3], the remainder terms multiplying

e±l would not remain bounded as z^>z0. As is the case when v = 0 or 2,

the asymptotic forms given here are made up of elementary func-

tions. As is not the case when v = 0 or 2 but as is the case in general

when v<2, the Stokes' phenomenon appears; that is, no solution is

asymptotic to one of the expressions y±n(x, X) everywhere in R. Pre-

viously, asymptotic forms approximating solutions of (2) to terms of

order e±£0(X~"_1) where n is any non-negative integer have been

found only for v= — 2, — 1, 0, 1, 2. In this respect the theory to be

given for v>2 is more complete than that known for v<2. But the

fact that z0 is an irregular singular point of (2) has prevented the

author from obtaining connection formulas for the solutions. Such

formulas are known if v<2 and are not necessary if v = 0 or 2. The

problem of finding connection formulas in X for fixed z has remained

unsolved in all cases.

2. Definition of £(x, X). The hypotheses upon Q(x, X) .guarantee

that it may be expanded in the series3

00    Q (x)

Q(x, X) = £ T- ' when x 9* 0 and | X |   > N,
0      X'

where the functions x"qj(x) are analytic in R. This series may be

differentiated termwise with respect to x.

Let <p(x) be the square root of qo(x) such that

(5) x'l2d>(x)\x=0= 1.

A sequence of polynomials k*(x), j = 0, 1, • • • , of degree [l+v/2]

or less is determined by the conditions that the following limits exist

2 The notation 0(X~") is used to designate a bounded function of * which when

multiplied by X" is a bounded function of X as well.

» The letter N is to be used as a generic symbol for a positive constant.
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(if 2<j><4, then k3*(x) will be the sum of a polynomial and a term

cx'~2) :

(a)   lim x"'2[K-*(x)qa(x) - ç,(x)] = l¡, j * 0, 2,

(6)     (b)   Ka*(x) s 1,

(c)    lim x"2 U*(x)îo(«) - ?*(*) + T ("J ~ M ̂ l = /2'

wherein the l¡ are constants. Because of the analyticity of x"Q(x, X) in

x and X, it is readily seen that the function k2(x, X) — k2*(x)/X2, where

A    Kj*(*)
«2(x, x) = E

0 X3'

is also analytic for xin R and | X | > N. The root

Kjjx)

X'
«(*. X) = 2

is chosen so that Ka(x) = 1. We now define £(x, X) to be any primitive

of

(7) i'(x, X) = Hx, \)<pix).

Lastly, we introduce a function 0(x, X) through the relation

[fix, X)]2 - \2Q(x, X) = \@(x, X) + — M - — J x-\

Referring to the definitions (6) of k,*(x), it is evident that x"l2@(x, X)

is bounded for ]X| <iV and x in R. Moreover,

°°   0 (x)
e(*,x) = Z-^> x^o.

o      X'

3. The surfaces i?z and R(. For fixed X the function £(x, X) is in

general multiple-valued in R. We therefore consider R to be covered

by a Riemann surface appropriate to a single-valued representation of

£(x, X). This surface will be designated Rx. The Riemann surface over

which the inverse function ^~1(x, X) is single-valued we denote i?j.

The portions of the positive and negative axes of reals included on

R( may be thought of as dividing this surface into regions H/,*,

j = l, 2, k = 0, ±1, ±2, • • • , where

Ei,*: 2*x g arg ({) ^ 2(Ä + l)x,
(8)

E2,*:       (2* - 1)» ^ arg (£) g (2* + l)r.



1956I ASYMPTOTIC SOLUTION OF A DIFFERENTIAL EQUATION 65

The boundaries of the images of these regions upon Rx are, of course,

dependent upon the parameter X. If the constant v is rational, the

surfaces Rx and R% may be of finite order; and in this case, only a

finite number of the regions By,» will be distinct. On the other hand,

if v is irrational, the regions Ey,* are distinct for all allowed j and k.

A curve joining a point of Sy,* to the point at infinity as approached

along the ray arg (£) = (2k —j + 2)ir and along which ■&.(£) is monotonie

will be called a T-curve. The image of such a curve upon Rx will be

called a y-curve. The final assumption to be made upon the character

of the region R may now be stated. We assume that for the value of

X under consideration and for each integer k all points of S/,*, j = 1

or 2, may be connected to £= » by T-curves chosen so that

I C    I
I dx   < N,   when    £(x, X) is in H/,t.

| J y

We note that inasmuch as £ is dependent upon X, a single region R

may not satisfy the above hypothesis for all X with |X| >N.

4. Determination of A±n(x, X). Direct computation shows that

L(y±n) = e^H±n

where

H±n(x, X) = A±n(x, a) ± 2¿(x, A)A±n(x, X)

+ [(?(*, X))2 - VQ(x, a) ± ?'(*, \)]A±n(x, X).

The function k(x, X) has been so chosen that it is possible to deter-

mine the a±j(x) to be bounded functions by equating the first n + l

terms of the series in descending powers of X for H±„(x, X) to zero.

These terms vanish provided that the a's satisfy the following differ-

ential equations

± 2<?x4„ + (0o ± *')a±o = 0,

± 2<pa±i + (6o ± <b')a±i + a±o + (v/4)(l - v/4)x~2

+ 2Ki4>a±o + [öi + (ki4>) ]a±o = 0,

± 2<j>a±m + (60 ± <t> )a±m + a±(m_i) ± 2<b ¿_, "í«±(m-í)
i

m

+ Z[0í± (kí*)']«±<—i) =0,
i

m = 2, 3, • • ■ , n.
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This is the case if

a±o(x) = </r1/2 exp I +  I    — dt),

a±i(*) =  + <*±o(x)   I     <±  [ki&0 + k{ <b]

v j v\ a±0) dt
(9) +- (i--)x-2 + ei + — \-,

4\ 4 / a±o) 2<p

<2</> ]T Kja±{m-j)

A , t,       \    dt
+ 2-, L(*i0)   ± öiJa±("i-i) ± «±(m_i)>--

i ; ¿<ba±a

m — 2,3, • ■ • ,n.

The functions x~"na±a are analytic in R, and the functions x~'/4-1a±m,

» = 1, • • • , », are bounded in R. Consequently, xvtiH±n(x, X) is

bounded in R.
The linear independence of y+n(x, X) and y_n(x, X) can now be

established. The Wronskian of these functions will be denoted

W(x, X), and it is easily seen from (4) that

Wix, X) =
A+n      A'+n + ÇA+n

A^n      A—„ Ç A— n

At x = 0 this relation becomes 1^(0, X) = — 2Xk(0, X). It can be shown

that [3, §3]

W'ix, X) = (l/\"){A+nH-n - A_nH+n}.

Integrating this expression from zero to z, we may conclude that

Wix, X) - - 2Xk(0, X) + B(x, X)/X"

for x in R and |X| >N, where B(x, X) designates a bounded function

of x and X. Thus for |x| sufficiently large W(x, X) is nonzero in R,

and therefore the functions y±n(x, X) are linearly independent.

5. Asymptotic solutions of L(u)=Q. In order to show the asymp-

totic representation of solutions of L(u) =0 by the functions y+„(x,X),

we compare L(u)=0 with the differential equation satisfied by the

functions

(10) z±nix, X) = [\/Wix, \)}1¡2y±n(x, X).
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This equation may be written in the form [3, §3]

d2z/dx2 - [\2Q(x, A) - Q(x, X)/X"]z = 0,

in which

Q(x, X) = - \*[E/W + (F/2W)2 + (F/2W)'],

F(x, X) =
A+n       H+n

A—n        tl—n

and    E(x, X) =
H+n     A+n + £ A+n

ti—n     A—n Ç A—„

The observations made in §4 upon the structure at x = 0 and behavior

in R of the functions a±j(x), H±n(x, X) and W(x, X) reveal that

x"l2Q.(x, X) is bounded in R. That ti(x, X) is bounded for |X| >N and

each fixed X9*0 may be concluded from the behavior of these same

functions at X= oo.

The relation

Z+n     Z+n

I

Z—n      Z—n

X

w
y+n   y+n

y-n   y'-n

follows directly from (10). Consequently, the Wronskian of z+n(x, X)

and z_„(x, X) is equal to X. Thus for each integer k a pair of linearly

independent solutions, Ui,k(x, X) and u2,k(x, X), of L(u) =0 is given by

the formulas

Uj,k(x, A)   = Z±n(x, X)

(11)-   i  [z+n(x)Z-n(t)   -  Z+n(t)Z-n(x)]n(t)uilk(t)dt,
Xn+1 J y

j - 1, 2, k - 0, ± 1, • • • .

In these and subsequent formulas the upper sign is to be used when

j = \, the lower sign when_;' = 2. As indicated the path of integration

is to be a y-curve.

With the aid of the abbreviations

(12)

Z±n = *»/««««±.

12(0
Kj(x, t,\) = ±

Ui.k = <pll2e^uhk,

[Z±n(x)Z?n(t)   - Z±n(t)ZTn(x)
4>(t)

■txo( + 2[k(x)-k(t)])l

equation (11) may be written as

(13) VU*) - ZU*) - VTT f *'(*. ». WUW-Xn+1 J y
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The functions ß(x, X)/<p(x) and Z±n(x, X) are bounded on Rx so that

the kernel Kj(x, t, X) is a bounded function aside from the exponential

factor. The 7-curves have been so chosen that this exponential is

bounded along a 7-curve. Thus Kj(x, t, X) is bounded for £ in Ey,*.

Equation (13) is formally satisfied by the infinite series

1   A Z£\x)
(14) tf,.t(*)=Z±n(s)+-E'  '

X" m_l Xm

wherein

Z?n\x) = J Kfix, t, \)Z?-l\t)dt,       z£{») = Z±n(x).

Let M denote an upper bound of

I Kj(x, t,\)\-\    \dt\,        \Z±n(x) I for£(x,X) inS,-,*;

then

(15) I Z?n\x) I  á M* for |(x, X) in E/.*.

This upper bound exists by virtue of the hypothesis made in §3 and

the remarks of the preceding paragraph. From (15) it is clear that

the infinite series (14) converges uniformly when |X| >M and £ is in

Ey,*. Referring to the expressions (12), (10), and (4), equation (14)

may now be rewritten in terms of «y,*(x, X) and y±n(x, X). In this

connection we note that

[\/Wix, X)]1'2 = Bi\) + 0(X-«-i),

where BÇX) is a bounded function of X.

To summarize the conclusions of our discussion we state the follow-

ing

Theorem. Under the hypotheses stated in §§1 and 3, over each region

Ey,* on R( the given differential equation (2) has a solution Mj,a(x, X)

of the form

r oix-»-1) "I
Uj.ki*, X) = e±« U±n(x, X) +-—\,       j - 1,2, h - 0, ± 1, •••.

The functions £(x, X), -4±„(x, X), and <£(x) and the region S,-,* are

described by the several formulas (3), (5), (7), (8), and (9). Since the

regions Si,* and Si,*-i cover the region H2,*, the theorem determines

a pair of linearly independent solutions of (2) for each x^O in Rx.
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The asymptotic representation of a solution Uj,k(x, X) given by the

theorem does not in general hold over all of Rx but only on the image

of E/,*.
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ON STIELTJES INTEGRATION

E. J. MCSHANE

Among the theorems concerning the Stieltjes integral there are two

which are established for integrals in one-dimensional space, but not

in spaces of more than one dimension. These are (I) if ffdg exists, /

and g have no common discontinuity; (II) if ffdg exists, and g is of

bounded variation and t is its total-variation function, then ffdt

exists. The method of proof for one dimension1 does not extend to

higher dimensions. In this note extensions of these theorems to n

dimensions are proved for the ordinary Stieltjes integral and for a

modified form of it.2

1. Definitions. Throughout this note we shall assume that / is

real-valued and bounded on a set D in the space R", and that g is

real-valued on Rn. For each interval 1ER" we define A„I in the usual

way, as the sum of 2n terms each of which is +1 times the value of

g at a vertex of I. If B is a closed interval contained in D, an ex-

tended partition of B is a set P= {Ji, I2, • • • , Ik, Xi, x2, • • • , xk} in
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