4. H. E. Vaughan, On locally compact, metrisable spaces, Bull. Amer. Math. Soc. vol. 43 (1937) pp. 532-535.

5. G. T. Whyburn, A certain transformation on metric spaces, Amer. J. Math. vol. 54 (1932) pp. 367-376.

University of Southern California and University of Washington

A THEOREM OF ÉLIE CARTAN

G. A. HUNT

André Weil [1] and Hopf and Samelson [2] have given a topological proof of the following theorem of Élie Cartan.

Two maximal Abelian subgroups of a compact connected Lie group G are conjugate within G.

I present a simple metric proof.

LEMMA. If x and y are elements of the Lie algebra g of G then $[x, A_{\sigma}y]$ vanishes for some inner automorphism A_{σ} of G.

PROOF. Because G is compact one can define on \mathfrak{g} a nonsingular bilinear form (u, v) which is invariant: $([u, v], w) + (v, [u, w]) \equiv 0$. We choose ϵ in G so that $(x, A_{\sigma}y)$ attains its minimum for $\sigma = \epsilon$; without loss of generality we may assume ϵ to be the neutral element of G, and then $A_{\mathfrak{s}}y = y$. If now z is any element of \mathfrak{g} the function $(x, A_{\mathfrak{oxp}}(\mathfrak{ts}) y)$ has a minimum for t = 0, so that its derivative vanishes there. Thus, keeping in mind that

$$\frac{d}{dt}A_{\exp(tz)}y\Big|_{t=0}=[z, y],$$

we have (x, [z, y]) = 0. From this equation and from the invariance of the bilinear form it follows that ([x, y], z) = 0 for all z; this can happen only if [x, y] vanishes, for the bilinear form is nondegenerate.

Before proving Cartan's theorem I recall some well-known facts: A maximal Abelian subgroup \mathfrak{K} of G is a torus group; there is an element x in the Lie algebra \mathfrak{h} of \mathfrak{K} such that the one parameter group exp tx is dense in \mathfrak{K} ; if y belongs to \mathfrak{g} and [x, y] = 0, then y must lie in \mathfrak{h} .

Matters being so, let \mathfrak{K}' be a second maximal Abelian subgroup of G and x' an element of its Lie algebra bearing the same relation

1956]

Received by the editors May 20, 1955.

to \mathfrak{K}' as x does to \mathfrak{K} . Now choose σ in G so that $[x, A_{\sigma}x']$ vanishes. Then $A_{\sigma}x'$ lies in \mathfrak{h} ; consequently $A_{\sigma}(\exp tx') \equiv \exp(tA_{\sigma}x')$ lies in \mathfrak{K} for every t. So \mathfrak{K} , being closed, includes the closure $A_{\sigma}(\mathfrak{K}')$ of the oneparameter group $A_{\sigma}(\exp tx')$. Finally $A_{\sigma}(\mathfrak{K}') = \mathfrak{K}$, because both are maximal Abelian subgroups of G.

Since every element of G can be written as exp y, the argument shows that every element of G can be moved into \mathfrak{K} by an inner automorphism of G.

The referee has pointed out that the argument of the lemma above is very like one used by R. Bott [3] in another context.

BIBLIOGRAPHY

1. A. Weil, Démonstration topologique d'un théorème fondamental de Cartan, C. R. Acad. Sci. Paris vol. 200 (1935) pp. 518-520.

2. H. Hopf and H. Samelson, Ein Satz über die Wirkungsräume geschlossene Liescher Gruppen, Comment. Math. Helv. vol. 13 (1941) pp. 240-251.

3. R. Bott, On torsion in Lie groups, Proc. Nat. Acad. Sci. U.S.A. vol. 40 (1954) pp. 586-588.

CORNELL UNIVERSITY