
A METRIZATION PROBLEM CONCERNING LATTICES

H. J. CURTIS

1. Introduction. The problem which we shall study stems from a

paper by Wilcox [8]. He considered the problem of extending a metric

topology of the point space of a semi-modular lattice to a topology

for the entire lattice. This problem is of significance for the classical

differential geometry of euclidean, affine, and projective spaces. Wil-

cox developed an extension of the topology of the point space in such

a way that the lattice is a Hausdorff space. In doing this he assumed

that the lattice is atomistic as well as semi-modular, that the elements

of the lattice, considered as point sets, are closed in the topology of

the point space, and that the greatest lower bound of distances from

a given point to points of a nonzero element of the lattice is con-

tinuous in any set of independent points determining the nonzero

element.

We consider the problem of determining conditions which are

sufficient to insure that the lattice is metrizable. We show first that

Wilcox's results are valid under slightly more general conditions than

those which he assumed. Three additional axioms are introduced:

first, the point space is separable; second, no element of dimension

greater than one, considered as a point set, has arbitrarily small

diameter; third, a generalization of Wilcox's axiom pertaining to the

greatest lower bound of distances from a point to points of any non-

zero element of the lattice.

We make use of a theorem of Urysohn to the effect that a separable

metric space is homeomorphic to a subset of a compact subset of

Hubert space. If P is the point space of a lattice L which satisfies

our axioms, we map P topologically onto a subset P' of a compact

subset of Hubert space. A lattice L', isomorphic to L and having

P' as its point space, is easily constructed. Over P', the closure of P',

we construct a lattice L' such that the elements of P' are the points

of L', such that each element of L' is contained (as a point set) in an

element of L' and such that L' satisfies the axioms of Wilcox. We can

then extend the topology of P' to L' by the method of Wilcox. Since

P' is compact, we are able to show that L' is compact. Then, using

Wilcox's definition of neighborhood, we show that U has a countable
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base. Hence, by another theorem of Urysohn, L' is metrizable. Then

V is metrizable and consequently so is L. Nonisomorphic examples

of lattices satisfying our axioms are the real euclidean and projective

spaces. To show that our three axioms are not consequences of Wil-

cox's axioms, we give examples of lattices satisfying his axioms but

not all of ours.

2. Foundations. Let L be a lattice satisfying the ascending and

descending chain conditions. There exist 0 and 1 in L consequently,

and every subset S oí L has a meet, 25, and a join, tS, in L. We shall

assume that 0^1. Then there exists at least one xEL such that x

covers 0 (written x>0); i.e., x>0, and if x>y^0, then y = 0. Let

P= [pEL; p>0], and, for each xEL, let Px= [pEP;púx]. We say

that L is atomistic if x=2Px for every xEL. If pEP, we call p a

point.

If y, zEL, we call (y, z) a modular pair, and write (y, z)M, pro-

vided that for every x^z, (x+y)z = x-f-yz. A lattice L, satisfying both

chain conditions, is called semi-modular if and only if, for every x,

yEL, x-\-y> x, y whenever x, y> xy. Wilcox [ó] has shown that L

is semi-modular if and only if (x, y)M implies (y, x)M. If L satisfies

both the ascending and descending chain conditions, all chains in L

are finite. If L is semi-modular and if xEL, x^O, the dimension of x,

d(x), is the largest positive integer n such that there exist Xi, • • • ,

Xn-iG-L such that 0<xi< • • • <x„=x. That such a largest positive

integer exists for each x^O has been proved by Birkhoff [2, p. 67].

We define ¿(0) =0 and let d(i) =N. Birkhoff [2, pp. 67, 100] has also
proved that if L is semi-modular, then d(x)+d(y) ¡èd(x+y)+d(xy),

the equality holding if and only if (x, y)M, and that d(x) =d(y)-\-l if

and only if x>y. Further it is evident that d(x)>d(y) if x>y, and

that [d(x);xEL] = [0, 1, ■ • • , N].
If y, zEL, yz = 0 and (y, z)M, we say that y and z are independent

and write (y, z) J-. We say that Xi, • • • , x„ are independent and write

(xi, • • • , xB) J., if 2(x¿; ÍES) and Z(xj-,jET) are independent, where

5 and T are subsets of [l, • • • , N] such that iES and jET implies

that i<j. If x=pi+ • • • +pn, piEP and (pi, • • • , pn) X, it is easily

shown that d(x) =n.

If P is a metric space with metric ô, we define for every x£L,

x?¿0, and every pEP,

b{p, x) = 5(x, p) = g.Lb. [5(p, q);qEP,q-áx}.

Wilcox [8] has studied certain lattices which he called "semi-

modular" according to the following definition : a lattice L satisfying

the two chain conditions is "semi-modular" if (x, y) J. implies (y, x)M
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and if xy^O implies (x, y)M, where x, yGL. The second of these con-

ditions is used only to establish the existence of the dimension func-

tion which we obtained above without the use of this condition. Con-

sequently the results of Wilcox's paper are valid if we replace his

definition of a semi-modular lattice by our definition. An example of

a lattice in which the relation M is symmetric but in which xy^O

does not imply (x, y)M has been given by Wilcox [5, p. 456].

We consider a lattice L satisfying the following four axioms:

Axiom I. L is semi-modular and atomistic.

Axiom IL P is a metric space with metric 5.

Axiom III. Let p,p,GP, {pi, ■ ■ -, pr) J-. For every e > 0 there exists

7>0 such that, if 8{ph ?,-) <y, then \8{p, pi+ ■ ■ • -\-pn)-8{p,

qi+ • ■ ■ +2»)| <e.

Axiom IV. The sets Px are closed in the topology of P. These are

the axioms of Wilcox except for the difference in the meaning of the

word "semi-modular." In view of the remark of the preceding para-

graph we know that it is possible to extend the topology of P to L

in such a way that L is a Hausdorff space. We shall show that under

certain further assumptions L is metrizable.

We include here several results pertaining to the relation J.. The

condition that {pi, pi+i+ • • • +pn) -L for every i = \, •••,« — 1 is

necessary and sufficient that {pi, ■ ■ • , pn) -L as has been proved by

Wilcox [7, p. 505]. We easily obtain another necessary and sufficient

condition that {pi, • • • , pn) J-, due originally to Menger [3, p. 462]

for lattices satisfying Axiom I and an axiom of complementation.

Theorem 2.1. Let pi, • ■ ■ , pnGP- For every n = 2, 3, • • • ,

ipu • ■ • , Pn)l-  if and only if pi{pi+i+ ■ ■ ■ +pn)=0 for  every
* = 1,   •   •   • , M-l.

Proof. The necessity is obvious in view of Wilcox's condition. The

sufficiency follows from the semi-modularity of L.

Still another necessary and sufficient condition is given in terms of

the metric 5.

Theorem 2.2. Let pu • • • , pnGP- For every w = 2, 3, ■ • • ,

ipu • • • . Pn) J- if and only if there exists <p>0 such that 8{pi, pi+i

+ • • • -r-pn)><¡> for every i=\, ■ • ■ ,n — \.

Proof. The theorem is a consequence of Axiom IV and Theorem

2.1.
We now introduce three additional axioms which we shall show

are sufficient to establish the metrizability of L.

Axiom V. P is separable.
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Axiom VI. Let {pa}, {pi} be Cauchy sequences (c = l, 2, • • •

and ¿ = 1, •••,«), pa and p\GP. If there exists <p>0 such that

for every a, 8{p%, #+1+ • • • +p»)><p lor every k = l, ■ ■ ■ , «-1,

then:

(a) lim„ 8{p", pl+ ■ ■ ■ +PD exists;
(b) there exists a Cauchy sequence {qa}, q'GP, <Z"a£î+ ■ • ■ +pn,

such that lim0 5(/>a, qa) = lim« 5(£°, #+ • • • +p£).

Axiom VII. There exists a >0 such that for every set of independ-

ent points pi, • • • , pn, there exist qu • • • , qnGP such that:

(a) gi+ • • • +qn=pi+ • • • +pn;

(b) ô(g*, 2*+i+ • • • +qn)>a for every k = l, • • • , n — 1.

It is evident that Axiom VI is a generalization of Axiom III. That

Axiom VI is not a consequence of Axioms I-IV will be shown in §6

by an example of a lattice satisfying Axioms I-IV but not Axiom VI.

Axiom VII rules out the possibility that any set Px has arbitrarily

small diameter. We shall show in §6 that it is independent of the

other axioms.

3. Extension of L. A theorem due to Urysohn [4] states that a

necessary and sufficient condition that a metric space P be homeo-

morphic to a subset of a compact subset of Hubert space is that P be

separable. We map P topologically onto a subset P' of a compact sub-

set of Hubert space, and we let P' be the closure of P' in this space.

This mapping leads, by obvious definitions, to a lattice L', isomorphic

to L, having P' as its point space and satisfying Axioms I—VII. We

note that the metric for P' is not necessarily the usual metric for

Hubert space but merely an equivalent one. For simplicity of nota-

tion we shall henceforth refer to P' and L' as P and L.

Our aim now is to extend L to a lattice L which has P as its point

space. We begin by extending the relation lonP cross P to a rela-

tion -L* on P cross P. We prove several consequences of Axiom VI.

Lemma 3.1. Let pGP and let {pl\ be Cauchy sequences with pIGP

{i = i, • • • , « and a = l, 2, • • • ). If there exists <6>0 such that

KPl, Pk+i+ • • • +Pñ)><t>for every k = l, • ■ • , n—1, then:
(a) lima 8{p, p"-\- • ■ • -\-pl) exists;
(b) there exists a Cauchy sequence {qa}, qaGP, qa^p1+ • ■ ■ +pñ,

such that lima 8{p, q") is equal to lima 8{p, pl+ • • • +pl).

Proof. Since pGP, there exists a Cauchy sequence {pa}, p"GP,

such that lim„ pa — p. By Axiom VI we know that lim0 8{pa, p\-\- • • •

-\-pl) exists; denote this limit by A. Also there exists a Cauchy se-

quence {qa\, q"GP, qaúpí+ • ■ • +pn, such that lima 8{pa, qa)=A.

Then it is clear that lima 8{p, q")=A. Now let e>0. For sufficiently
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large a,  \ 5(pa, qa)-A\ <e and  | 5(p", p\+ • • • +pn)-A\ <e and

5(p. P") <«• Therefore we see that

ö(p, p"i + ■ ■ ■ + pi) á 8(p, q") g 5(p, p") + 8(p", q'X A + 2e.

We also know that there exist xaEP, xa^p1+ • • • +pñ, such that

d(p, xa) <b(p, p\+ ■ ■ ■ +p„) + e. Hence we have

A < ô(p, pî + ■ ■ ■ + pi) + e = o{p", x") + t

and

A < 8(pa, p) + 5(p, x")+e< Ô(p, p"+ ■■■ +pl) + 3e.

Thus it follows that lim0 8(p, p\+ ■ ■ ■ +pan) =A.

Theorem 3.1. Let [pi] and {ql} be Cauchy sequences with pi and

qlEP (*=1, • ■ • ,n and a = l, 2, • • • ), such that lima 5(p1, q1)=0.

// there exist 4>u <l>i>0 such that o (pi, pl+i+ • ■ • -\-pn)><Pi and

ô(g*. S*+i + • • • +2n)>4>2 for every k = \, ■ ■■ , ra-1, and if {x°}

isa Cauchy sequence, xa EP, xa S p\-\- ■ • ■ -\-pn, then there exist ya EP,

ya^qi+ ■ ■ • +qn, such that lima ô(xa, ya) =0.

Proof. The theorem is a consequence of Lemma 3.1 and the com-

pactness of P.

Corollary. Let x, piEP (t = l, ••♦,«) and let pi, ql and xlEP
such that lima p1=pi, lim0 q1=qu lim„ x" = x and xaápí + ■ ■ • +pn-

If there exist <pi,<pi>0 such that for every a = 1,2, • • • , <>(p?,p2+i + • • •

+pn)><pi and è(ql, qî+i + ■ ■ ■ -\-ql)>(p2, then there exist y"EP,

y°S=2Î+ • ■ • -r-ql, such that lima y° = x.

Definition 3.1. If pi, piEP and p^p2, we say that pi and p2 are

independent and write (pi, p2)-L*.

Corollary. If (pu p2)±.*, then (p2, pi)-L*.

Definition 3.2. If pi, p2EP and (pi, p2)-L*, then S(pu p2) = [sEP;

there exist sequences {pi} (* = !, 2 and a = l, 2, • • •), piEP and

(pi, pl)A., such that lim p1 = pu and there exist saEP, sa^p1+pa2,

such that lim„ í° = í].

Corollary. S(pu p2) =S(p2, pi).

Definition 3.3. If piEP (*«1, ■ • • , n and n = 3, 4, • • • ), we

say that pi, • • ■ , p» are independent and write (pi, • • ■ , pn)-L*, if

(pi, • • • , P»)-L* and pi is not in S(p2, ■ ■ ■ ,pn), where S(p2, ■ ■ ■ , p„)

= [s E P; there exist sequences {pi} (i = 2, ■ • • ,»anda = l,2, • • • ),
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PiGP, {p\, ■ • ■ ,pl)L, such that lim0 p1=pi, and there exist saGP,

saápl+ ■ ■ ■ +p%, such that lim0 sa = s].

We next show that {pi, ■ ■ • , pn)-i-* is symmetric in the pt and

hence that S{pi, • • ■ , pn) is also.

Theorem 3.2. If {pu ■ ■ ■ , p„)±*, piG?, and if lima pi=pit piGP,

then there exists <p>0 such that 8{p%, £?+!"+" • • • -\-pn)><¡> for every

k = l, ■ ■ • , « —1 and all sufficiently large a (« = 2, 3, • • • ).

Proof. The theorem is easily proved by induction.

Theorem 3.3. If pu • ■ ■ , pnGP, «^2, and {pu ■ ■ • , pn)±* and

if T{pi, ■ • ■ , pn) = [tGP; for every set of n sequences {pi), pIGP,

such that lima pi = pi and {pi, ■ ■ ■ , p°).L, there exist taGP,taèpï+ • • ■

+pl, such that lim0 t"=t], then T{pu ■ ■ ■ , pn) =S{pu ■ ■ ■ , pn).

Proof. The theorem follows immediately from Theorems 2.2, 3.1

and 3.2.

Lemma 3.2. If qGS{pu • ■ ■ , pn), n^2, piGP, and if {q, p2, ■ ■ • ,
pn)-L*, then S{q, p2, ■ ■ ■ , pn) =S{pu ■ ■ ■ , pn).

Proof. It is easily shown by Theorem 3.3 that S{pi, • ■ ■ , pn)

contains S{q, p2, ■ ■ ■ , pn). The reverse inclusion is established by

Theorem 3.2 and the corollary to Theorem 3.1.

Lemma 3.3. If {pu ■ ■ ■ , p„)±*, ptGP,n^2,then {ph, ■ ■ • ,pik)±*
for every k = 2, • ■ ■ , n and ii< ■ ■ • <**.

Proof. This is a direct consequence of the definition of _L*.

Theorem 3.4. // {pu ■ ■ • , pn)-L*, piG?, «è2, then (ph, • • • ,

piJA.* for every permutation *i, • • • ,in of the integers 1, • ■ ■ , «.

Proof. Make an induction on « and use Lemmas 3.2 and 3.3.

If xGL and d(x) =w, then any « independent points in Px deter-

minex; i.e., ilpi^x and {pi, ■ ■• , £n)-L, thenx=pi-\- • • • +pn. We

establish a similar property for the sets S{pi, • • • , pn).

Theorem 3.5. If qu ■ ■ ■ , qnGP, qiGS{pu • ■ • , p„) and {qu • • ■ ,

qn) J.*, then S{qu ■ ■ ■ , qn) =S{plt • • • , pn)..

Proof. It is obvious that S{qu • • • , g„) is contained in S{pi, ■ • • ,

pn). The reverse inclusion can be proved by the use of Theorem 3.2

and the corollary to Theorem 3.1.

In L, p!+ ■ • ■ -\-pN = 1 if and only if {pi, • • • , Pn)-L, where

piGP. Consequently {pi, • • • , pn)-L is false iln>N. These facts have

the following consequences for L.
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Theorem 3.6. // (pi, • • • , pjv)-L, then S(pu ■ ■ ■ , pN) =P.

Corollary. If pi, • • • , Pn+iEP, then (pi, ■ ■ ■ , Pat+i)-L* is false.

We are now ready to define L, the extension of L. For simplicity

in the statement of theorems we make the following definition.

Definition 3.4. If pEP, S(p) = [p]. We shall usually denote S(p)

simply by p.
Definition 3.5. Let L be the set consisting of the empty set and

all sets of the form S(pu • • • , p„), where \=n = N, piEP, and

(Pu • • ■ i Pn)-L*. We denote the empty set by 0* and P by 1*.

Definition 3.6. If X, YEL, X^*Ymeans XCY.

Corollary. The sets S(p), pEP, are the "points" of L.

It is obvious that L is partly ordered by g *. The next theorem

provides the basis for a definition of the meet of two elements of L.

Theorem 3.7. For every ra = l, 2, • • • , if piEP, «' = 1, ••-,«,

there exist k, 1 ■—k^n, and qi, • • • , qkEP, chosen from among the pi,

such that:

(a) (gi, • • • , 2*)-L* andpiES(qu • • ■ , qk);

(b) if k>l and if rtEP, * = 1, • • • , k — 1, such that (ru • • • ,
r*_i) -L *, then there exists p¡ such that p¡ is not in S(ru • • • , rk-i) ;

(c) the set S(qï} • • ■ , qk) is unique.

Proof. If pi= • • • =p„, we can take qi=pi. If two of the p,- are

distinct, say pl and pi, then (pi, pi)±*.ll piES(pi, pi), i = 3, ••-,«,
let gi=pi and q2=p2. H rEP, it is clear that either qx or q^r; that

is, either p\ or p2 is not in S(r). If p3 is not in S(pi, p2), then (pi, p2,

p3)-L*. Suppose piES(pi, pi, pz), i = 4, • • • , n. Let g,=p< for t = l, 2,

3. If (fi, r2)±* and every piES(ru n), then S(pi, p2)=S(ru r2) by

Theorem 3.5. Hence pzES(pi, pi) contrary to (pi, p2, ps)l-*. Therefore

there exists p¡ not in S(rx, r2).

We repeat this argument. By Theorems 3.5 and 3.6 we reach, in a

finite number of steps, a set S(qi, ■ • ■ ,qk),k^n, such that qu ■ • • ,qk

satisfy conditions (a) and (b) and have been chosen from among the

pi. To show the uniqueness of S(qi, • • ■ , qk) suppose that q{, • • • , qi>

satisfy conditions (a) and (b). Then clearly k' = k by condition (b).

Since the q{ were chosen from among the p¡, every qiES(q{, ■ ■ • , q¿ )

and therefore, by Theorem 3.5, S(q{, • • • , q¿)=S(qi, • • ■ , qk).

Definition 3.7. If S(pu ■ ■ ■ , pn) and S(tu • • • , tm) are in L, then

«Stpi, • • • i Pn)®S(ti, • • • , tm) is defined to be the unique set

S(qu • • • , qk), where qu ■ • ■ , qk is any finite sequence which satis-
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fies the properties (a) and (b) of Theorem 3.7. We also define 0*®X

=X®0*=X lor every XGL.

Theorem 3.8. // X, YGL and Z=X® Y, then Z is the least upper

bound of X and Y.

The next theorem is preliminary to the definition of the join of two

elements of L.

Theorem 3.9. If X = S{pu • ■ ■ , pn) and Y=S{tu ■ • ■ , tm), then

either Xi\Y=0* or there exists a unique Z = S{qi, • ■ • , qk), l^k

^min [m, «], such that:

(a) Z = XC\Y;

(b) for every WGL such that W^*X and W^*Y, it is true that

Wú*Z.

Proof. The existence of Z is established by the corollary to Theo-

rem 3.6, its uniqueness by Theorem 3.5.

Definition 3.8. If X and YGL, then we define

(a) XQY=YQX^O*,il Xf\Y = 0*;
(b) if Xr\Y^0*, 10 Y = S{qu ■ • ■ , qk), where qu ■ ■ • , qk is any

finite sequence satisfying conditions (a) and (b) of Theorem 3.9.

Corollary. If X and YGL and Z=XOY, then Z is the greatest

lower bound of X and Y.

In view of the preceding theorems and definitions the following

theorem is clear.

Theorem 3.10. The system {L, ^*, ©, O) is a lattice.

4. Properties of L. It is now not difficult to show that L satisfies

Axioms I-IV. We include only a proof that L satisfies Axiom III.

Our method is to show that L satisfies Axiom VI, of which Axiom

III is a consequence. The proof indicates the importance of Axiom

VI to the extension of L to L.

Theorem 4.1. Let {pa}, {pi} be Cauchy sequences {i = i, • • • , n

and a — \,2, ■ ■ ■ ), pa, p\GP- If there exists <p>0 such that for every a,

8{pl, pl+i® ■ ■ ■ ®Pl)><pfor every k = l, • ■ • , «-1, then:
(a) lim„ 8{pa, p\@ ■ ■ • @pl) exists;

(b) there exists a Cauchy sequence {qa}, qaGP, q"ûp\® • ■ • @pl,

such that lima 8{pa, qa) =lima 8{pa, p\® ■ ■ ■ ®pan).

Proof. For each a there exist pah, pfGP such that Iim¡, pab=pa and

lim¡, pf=p1. For every a, {pi, • • • , pld-L*, so there exist c6a>0 such

that, for sufficiently large b, 8{p?, ¿>f+1+-Vpt)>fa. Therefore,
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by Axiom VI, lim6 &(pab, pf+ • • • +pt) exists and there exists a

Cauchy sequence {q<*}, q^EP, qab^pf+ • ■ • +pf, such that

lim¡, ô(pai, go6)=lim6 b(pai, pf+ • • • +pnb). It is clear that there

exists g° = lim6 qabEP, and q"^*p1® ■ • ■ ®pa„. Then it follows that

Iim o(p°\ qab) = ô(pa, q°)

= lim Ô(p , pi   + •• ■ +pn)
I

= Kp", pi ® • • • © pi).

For every e>0 and every a, there exists Ka>0 such that b>Ka im-

plies that

1      ,    a       ab ab .    a       a a

\à(p   ,pl     H-+ pn  )   -  KP   > Pl   ®   •  •  •   ®  Pn) |     <  «•

Let ba be the smallest integer greater than Ka. Then there exist piEP

such that p, = lim0 p? = lim„ pfa, and, since there exists <£>0 such

that ô(pî, pak+i® ■ ■ ■ ®pan)>4> for every k = l, ■ ■ ■ , ra-1, (pi, • • ■ ,

pn)-L*. Therefore there exists? >0 such that è(p?°, p?fi+ ■ ■ • +pt°)

>7 for every k = l, • • • , n — 1 and for sufficiently large a. By Axiom

VI we know that lim0 h(pab% pf°+ ■ ■ ■ +pt") exists and that there

also exists a Cauchy sequence {t"*»}, r^'EP, r^^pf'-r- ■ ■ • +pfa,

such that lim0 8(pab<1, rab°)=lima 5(pa6°, pf°+ ■ ■ • +pfa). Since P is

compact, there exists pEP such that p = lima pa = lim„ p"6«, and there

exists r EP such that r = lim0 ro6° and r gpi © • • • ffip„. Therefore we

have:
..        -/    °ka       fl&tt. ..        »/    «Ôa       aba    , 060. „ . .

lim ô(p    ,r   ) = lim ô(p    , pi    + ■ ■ ■ + pn ) = KP, r)
a a

= lim ô(p , p 1    H-+ pn )
a

= lim S(p", pi ® ■ • • © pn)
a

= 8(p, pi ®   ■  ■ ■   ® pn).

For sufficiently large a

KP ,pl      +  ■ • •   + pn    )  - KP , Pl ©   • • •   © Pn) I    < 6.

Since we also have

l.,aa— av -/    fl       aba    . aba.   1

I KP  , Pl ©   • • • ©   Pn)  - KP  , Pl      +  ■••   +Pn    ) I    < Í,

we conclude that
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I Sip', pi ® • ■ • 0 pi) - 8{p", pi® •■ • ® pn)\   <2e,

I 8{p", pi® ■ ■ ■ ® pD - 0{p, pi® ■•• ® pn)\  < 2t.

Therefore lim„ 8{pa, pi® • • ■ ®pn) exists and equals 8{p, pi® • • ■

®pn). Since 8{pa, qa)=8{pa, pi® • • • ®pan) and since lim0 8{pa,

pi® ■ ■ ■ ®pl) exists, it follows that lim0 8{pa, ga)=lim„ 8{pa,

p\® • ■ ■ ®pl) = 8{p, pi® ■ ■ ■ ®pn). Finally, we see that lima 8{pa,

qa) =lim„ 8{p, qa) implies that {qa} is a Cauchy sequence.

5. Compactness of L and the metrization of L. Since L satisfies

Axioms I-IV, the topology of P can be extended to L in the same

manner in which Wilcox extended the topology of P to L. With

respect to this topology L is a Hausdorff space [8, p. 283]. We can

show further that L is compact relative to this topology. Urysohn

[l, p. 82] has shown that a compact space is metrizable if and only

if it has a countable base. We show that L has a countable base and

hence that L is metrizable. The metrization of L provides the desired

metrization of L.

Theorem 5.1. If P is compact, then L is compact.

Proof. Let {x"} be a sequence with xaGL. Since d(l) is finite,

{xa} has at least one subsequence consisting entirely of elements of

the same dimension. If this dimension is 0, 1 or N, it is obvious that

the subsequence has a limit in L. Otherwise, for simplicity of nota-

tion, let us assume that d{xa)=n, 2^n<N, for every a. For each

xa let x" = p1+ • • • +pan, PiGP- Note that {pi, ■ ■ • , p%)L. Since P

is compact, there exists a subsequence {at,} of {a} such that lim¡, p1b

exists for each t = l, • • • , «. Let pi = X\mt, p1b. Clearly p1b-\- ■ ■ •-r-pni

= xab and {p1b, • • • , pñh)^-. Therefore, by Axiom VII, we can replace

the pi", for every b, by points q1b such that2Í» + • • • +ql"=p1"+ • ■ •
+pl" and such that 8{q$>, qîb+l+ ■ ■ ■ +qnb)>a>0 lor every

k = l, ■ • • ,« — 1, where a is independent of the p1b. Again since P is

compact, there exists a subsequence of {ab}, which we denote for

simplicity as {c}, such that limc qet exists. Let g.-^lim,: q\.

We now show that (<7i, • • • , ?n)-L. If <Z„_i=<Z„, then 8{qn_u qcn) can

be made arbitrarily small, contrary to 8{qcn_lt qcn)>a. Therefore, if

iiu • • • , 5„)-L is false, there exists a minimum m, 1 <m^n — 1, such

that {qm, • • • , qn)-i-, while {qm-U ■ • ■ , qn)± is false. Then

qm-Mm+ ■ • • +311)7^0 and qm-i^qm+ ■ ■ ■ +qn. Under these con-

ditions Wilcox [8, pp. 278-279] has shown that limc {q'm-\- • • ■ +qcn)

= qm+ • • • +2n, and also that there exist xc£P, xc^qcm+ • ■ • +q„,

such that limc xc=qm-i. But lim,, qcm-i=qm-i, so limc 5(xc, Çm-i) =0-
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Therefore limc h(qm-i, qm+ • • ■ +g^)=0, contrary to the fact that

%m-i, ?m+ ■ • • +qn)>oc for every c. Finally, since (qu ■ ■ ■ , ff„)-L

is now known to be true, we can apply a theorem of Wilcox [8, p. 279,

Theorem 2.3], according to which limc (q{+ • • ■ +qn)=qi+ ■ ■ • +qn-

Therefore L is compact.

In order to show that L is compact we need merely to verify that

L satisfies Axiom VII. Then since P is compact, we can repeat the

proof of Theorem 5.1. The verification depends upon the compactness

of P, Axiom VII (applied to L), and Theorem 3.5.

Theorem 5.2. L has a countable base.

Proof. Let p1, p2, p3, • • • be dense in P (and hence in P). A

countable base for L is obtained by taking the set of all neighborhoods

of the form U(x; l/k; pa\ ■ ■ ■ , pan), where x=pai+ ■ ■ ■ +pan,

[au • • • , a»]C[l, • ■ ■ , N], k = l, 2, • ■ ■ , defined by Wilcox [8,

p. 281] as the set of yEL with d(y) =n such that 5(p<", y) <l/k. To

this set of neighborhoods we adjoin the empty set. That this set is

a base for L can be established with the help of lemmas of Wilcox

[8, p. 282, Lemmas 3.3 and 3.4].

We have thus proved that L is metrizable, in view of Urysohn's

theorem.

Theorem 5.3. L is metrizable.

6. Independence of the axioms. Axioms I—VII are satisfied by the

real euclidean plane and also by the real projective plane. In the

former plane we may take 5 to be the ordinary euclidean metric

and in the latter plane to be the elliptic metric. We note that the

planes are not isomorphic.

We now give an example of a space satisfying Axioms I-VI but

not Axiom VII. Consider all points inside and on the boundary of a

triangle in the euclidean plane. Let the lines of the space be deter-

mined as in the full plane and let the metric for the point space be

the euclidean metric. Obviously Axiom VII is not satisfied, since

there exist lines which, considered as point sets, have arbitrarily small

diameter.

The following space satisfies Axioms I-V and VII, but does not

satisfy Axiom VI. Let P be the set of points in the euclidean plane

consisting of: (a) the points (1, 1/w) and ( —1, 1/ra) forra = l, 2, • • ■ ;

(b) the points (0, 1/2») for ra = 0, 1, • • • . Let the point metric be

the euclidean metric, and for each pair of points plt p2, let pi+pi be

the intersection of the line containing pi and p2 in the full plane and

P. It is clear that Axioms I-V and VII are satisfied. To show that
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Axiom VI is not satisfied let pï = { — i, 1/a) and p% = {\, l/a) and

pa = (0, 1), for every a. Then lim0 8{p", pl+pl) does not exist, because

àiP", Pl+ptt2) = l-l/a, if a = 2\ k = 0, 1, • • • , while 8{p«, pl+p')
= (1 + (1 —I/o2))1'2, if a9£2k. In the former case the limit is 1, while

in the latter it is 21/2.

7. Conclusion. We mention here some questions raised by our

study. The most important problem is to find a method of metriza-

tion which is not dependent upon the theory of compact spaces. We

note that Axioms V and VII are directly involved in the use of the

theory of compact spaces. Both axioms were introduced in order to

make available the results of Urysohn's theorems. The motivation for

the introduction of Axiom VI is perhaps less obvious. The primary

purpose was to extend the property of L given by Axiom III to L.

Axiom VI was also used to prove that {pi, • • • , />n)-L* is symmetric

in the pi. Since Axiom VI plays an important role in the extension

of L to L, it is ultimately directed toward the use of the theory of

compact spaces. A sufficient condition that a lattice satisfying Axioms

I-IV be metrizable is that it satisfy Axioms V-VII. The question of

necessary conditions remains open. That Axiom V is not a necessary

condition is known by an example. Whether there are any lattices

which satisfy Axioms I-IV but are not metrizable is not known.
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