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Introduction. In the attempt to solve certain problems in mathe-

matical-physics, such as diffraction of an arbitrary pulse by a wedge

as considered by Irvin Kay [l], one encounters the hyperbolic differ-

ential equation

(1) «»» — q(x)u = uxt — p(x)ut

where u(x, t) must satisfy the conditions u(a, t)=u(b, /)=0 and

u(x, 0) =F(x). In attempting to solve equation (1) by separation of

variables, one is led to the consideration of expanding an arbitrary

function F(x) in terms of the eigenfunctions, or nonzero solutions,

un(x) of the equation:

(2) (A + \B)u = 0

satisfying the conditions u(a)=u(b)=0, where A is the operator

d2/dx2+q(x) and B is the operator — d/dx-\-p(x). The system adjoint

to (2) is:

(3) (A* + \B*)v « 0,        v(a) = v(b) = 0

where A =A* and B*=d/dx+p(x).

Conditions have been established [2], under which a function F(x)

of bounded variation on (a, b) can be expanded in terms of un(x).

However, in the expansion F(jc)=E-« anun(x) there are certain

properties of the coefficients, an, which differ quite radically from the

corresponding properties of the coefficients of certain well-known self-

adjoint eigenfunction expansions. For example, if Bn are the Fourier

coefficients of a function g(x), it is well known that limn,«, Bn = 0.

However, in the expansion i"(x)=E-» a„u»(x), it is found that

limn_M an is not in general equal to zero;. Consequently, the series

22? °n> unlike the corresponding series of Fourier coefficients, does

not in general converge.
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In this paper it is proved that limn<00 an = 0 if and only if F(a)

= F(o)=0.
The following theorem was proved in [2 ] :

Theorem 1. Let q(x) be continuous and let p(x) have a continuous

second derivative. If F(x) is of bounded variation in (a, b) and if

(4) F(a + 0) + F(b - 0) exp ["- J* p(t)dt\ = 0,

then the series

(5) 23 a„un(x),

where

/.
F(ÖBVf)#

an =

/.

b

un(ï)B*vn(Ç)dZ

with un(x) and vn(x) eigen]'unctions of (2) and (3) respectively, converges

to [F(x + 0)+F(x —0)]/2 in the interval a<x<b. If F(x) does not

satisfy the condition (4), then the series (5) converges to

T(x) = [F(x + 0) + F(x - 0)]/2 - c exp [" f p(t)dt\

in the interval a < x < b, where

c =  ÍF(a + 0) + F(b - 0) exp T- j p(t)dt^ j 2.

We now prove:

Theorem 2. If F'(x) exists and is of bounded variation for a^x^b,

and if F(a)+F(b) exp [— flp(t)dt] =0, then a necessary and sufficient

condition that \\mn^„ an = 0 is that F(a) =F(b) =0. (The prime denotes

differentiation with respect to x.)

Asymptotic form of an. Since

an = J Ftä&v^dt / f un(0B*vn(^,

we can develop the asymptotic form for an by considering the cor-

responding forms for m„(£) and B*v„(£), and we have from [2]
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Un(x) = Ua(x, X„)

(6) = X«-1 jexp   Xn(x - a) - j p(t)dt   - exp    j p(t)dt i

+ 0(\n2 exp [(Xn + | <r | )(x - a)/2]),

where «rn = Re Xn and  | X» | —► °o,

(7)        B*vn(x) = B*va(x, \n) = exp Ï-\nx + j p(t)dt\ + ß«,

where

fO(XB-2 exp [-X„a]) + OCX«"1 exp [-X„s]), ReXn = 0,m   (0(\ñ2<

Wr1-lOCKñ1 exp [-X„z]) Re X„ = 0,

and where

(7a) 2nri + 2 Í* p(t)dt + 0 (—)

X„ =-—-— ■
o — a

From (6) and (7) we have:

«.(Ö5*».(Ö =
exp (—X„a) / 1

X„
(8)

°&)

exp    -X„£ + 2j    />(/)a7

x7~

f s«»(p\(o¿{ = fb exp (~x"a) # + f &o (-^W
•'o «/a X„ «'a\XB/

exPr-Xnf + 2j   />(/)d/|

and

m

-/ X„
#.

Now since k„(£) has a bounded derivative on (a, b), it follows that

«„(£) is of bounded variation for a = £ = o. Also

^»(0 = í(ÉK(í)+».'(©

and
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- [5*».(Ö] - #({K(Ö + v.®?® + «."(©
öS

but by (3)

fn"(Ö = - ?({K(8 - x„[K£K(l) + «.'(DJ.
Therefore

(10) d£

-K\t(XMÙ+ *£(&]
is bounded for oá£á&. Hence B*v„(¡;) is of bounded variation for

aúíúb and it follows that

(11) un(0B*vn(0

is of bounded variation, and consequently the term

g(n, Ö

•&)- X*

in (9) is of bounded variation for aa£ = ^- Now put

g(n, ö = öi(n, e - e,(», e

where Qi(n, £) and Ç2(«, £) are two non-negative bounded monotone

decreasing functions, and apply the mean value theorem to (9) and

we get:

j un(t)B*vn(m

rbexp(-\na) Qi(n, a) r*

J a X» X„ J a

(12)

df

n/      N  -a „»   expT-Xn^+2 f p(t)dl~\
Q2(n, a) r <*        rb        L J a        J

J a Ja Xnx»

(J — at exp (—Xna)

X»

¿5

[(6-a)exp(-X„a)+o(^-)]

where a < ¿i, d2 < 6.
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Now put

m [<s-'>^<-x-°>+°(i)]-iS)-

We then have

a„ = B(n)\»f F(Q exp|"-Xn£ + J p(t)dt\ <g

(14) +B(n)\nJ
*F(S)G>[exp(-XnQ]

X„

*     s   /exp [—X„a]>

ft

(15)

/' /exp |-X„aJ\
H&O Í —^—-) #• for Re x« = °.

aB = B(n)\nj F® expl-\¿ + f />(/)d/~L

/h          /exp [-Xn£]\
F{H)0 M~^--) #. Re *" = 0.

Determination of the limit of a„. From equation (14) we have, for

ReXB = 0:

lim a„ - lim B(n)\n f F(Q exp|-Xn? + f p(t)dt\dZ

(16) + lim £(») f F(?)0(exp [-X„£])d£

+ lim -^      F(ÖO(exp [-Xna])<f£,
rt—►«     Xn    v a

provided these limits exist. Since B*vn(x) is of bounded variation for

a_^_&, it is clear from (7) that the expressions 0(exp [— X„£]) and

0(exp [—X„a]) in the integrands of (16) are also of bounded variation

fora=^ = ô.

Consider now the second integral of (16). We have:

lim B(n) f F(©0(exp [-X„£])¿£
n—»co J a

(17)

= lim B(n) f F(Ö«i(», Ö exp [-X„{]df,

where gi(nt £) and consequently i\£)gi(w, £) are of bounded variation
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for a£S£b. Put F(k)gx(n, É)=Oj(», £)-&(«, $), where Q,(n, £) and
Qi(n, £) are two non-negative, bounded monotone decreasing func-

tions, and apply the mean value theorem to (17) and we get:

lim B(n) f F(í)gi(n, Ö exp [-Xn£]¿£

- lim Bin) \Qi{-n' ̂ CXP t~X"^Y'     Qi{n' a) CXP t-^K^I
»->» L ~'Xn /o Xn /a J

,.    0(1)= lim-•

(18)

Since\n = (2mri+2fap(t)dt)/(b-a) +0(1/»), it is clear that X„=wO(l)

and (18) becomes:

r" r 0(1)
(19) lim B(n)      F(f)gi(n, Ö exp [-X»f]df = lim-= 0.

n—>oo «/ 0 n-*oo      ?Z

A completely similar argument will show that the third integral in

(16) becomes:

B(n)  rb r 0(1)
lim -^-- I   F(£)0(exp [-X»a])df = lim -^- = 0.
n—►»     Xn    •/ a n-*w      n

Hence, by (14) and (15), we have:

(20) lim a. = lim \nB(n) f F({) expT-Xní + f i(*)<ft]df.

If in (20), we put F(£) exp [fïtP(t)dt]=H(£) and integrate by parts

we get:

(21)

lim an = - lim B(n) \ [#(£) exp (-X„£)]a

- j H'(£)exp(-\¿)dÁ.

Using the fact that F'(£) is of bounded variation for a^^b, it fol-

lows that #'(£) is also of bounded variation for a^^b and

r" /!\        o(i)
(22)       lim   I   #'(£) exp (-X„£)¿£ = limOl—) = lim-= 0.

n-*oo   «/ 0 n—► «       \An/        »-♦«     W

We have finally, by (7a), (21) and (22):
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lim aB = lim B(n) < F(a) exp [ — X„a]

(23)

- F(b) expl f p(t)dt - X.&11

But, by Theorem 2, we have

(24) F(a) = - expT- J p(t)dt\F(b).

Therefore

(25)

lim aB = -Fib) lim ß(w)(exp   -  Í   pit)dt - XBa

+ exp|   f pit)dt-Kbi\.

We have from (13) that:

1
lim Bin)e~x"a =

b — a

Using this result in (25), we have

Fib)
lim an = —
n—*« o

(26)

— lim (exp   -  )    /»(/)d/-2X„a

+ exp|~ j pit)dt - Kib + a)lV

From the value of X„ as given by (7a), it is clear that the second

factor in equation (26) does not approach zero as n approaches in-

finity. Hence it follows that lim,,..« a„ —0 if and only if Fib) =0. Then

it follows from (24) that F(a) is also equal to zero. And, our theorem

is proved.
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