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From Theorem 1 we see that the means N($) are equivalent with
Ci for k=1, 2, 3, 4, but not for k=5 (and probably, not for any
k=5).
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REARRANGEMENTS OF SERIES
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1. Introduction. Professor R. P. Agnew [1] and the author [2]
have considered the metric space E of points x=(x1, x2, %3, * * + )
where the complex (x1, x2, x3, + + + ) is a permutation of the positive
integers and the distance between two points x and y is defined by
o1 [ #n =
) U ) = 2 T To ey
Starting with a given conditionally convergent series  m, ¢, of
real terms, we associate it with the point (1, 2, 3, - - - ) of the space
E. Following Professor Agnew, we sometimes write the series » c,
in the form D c(n). With a given rearrangement of this series, say
c(m)+c(nz)+c(ns)+ - - -, we associate in a unique manner the point
z=(m1, M, m3, + - + ) of the space E. For instance the rearranged series
c+a+cites+ - - - is associated with the point (2, 1, 4, 3, - - )
of E. Conversely, with a given point 2= (#, %3, - - - ) of E we associ-
ate the rearrangement c(#n;) +c(n2)+ - - - of the given series, and if
the rearrangement converges to a we shall say that the series which
corresponds to the point z converges to a.
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Let 4 denote the proper subset of E which contains each point of E
which corresponds to a convergent rearrangement of Y c,. To each
real number « there corresponds an infinite collection of rearrange-
ments of Y ¢, which converge to a. Hence to each real number «
there corresponds an infinite subset of 4 which contains those points
of A which correspond to rearrangements of Y ¢, converging to a.
The subset 4 may be endowed with the topology of E, and we may
regard the given series as providing a function f which maps the space
A onto the real number space.

Corresponding to different conditionally convergent series, the sets
4 in E whose points correspond to real numbers « in the sense de-
scribed above are in general different. Even if we would start with a
different rearrangement of the original series ¢, we would perhaps
get a different set 4. In spite of this, these sets A exhibit some prop-
erties which are independent of the particular conditionally con-
vergent series which give rise to them. Making free use of the notation
and terminology from a book on topology by Professor R. Vai-
dyanathaswamy [3], we record here some properties of 4 and f.
A referee is responsible for simplifications of the proofs.

2. Properties of A. In what follows, the set or space 4 is as defined
above, and, for each x in A4, f(x) is the real number to which the
rearrangement of Y ¢, corresponding to x converges.

THEOREM 1. The set A is a dense boundary subset of E.

To prove that A4 is dense in E, we select any real number « and
denote by 4 («) the original of « so that 4 (a) consists of those points
of A which correspond to series converging to a. The set 4(«) may
also be denoted by the symbol f~1(a). We prove that 4 () is dense in
E and since 4 (a) C4 it follows that 4 is dense in E. Let p be a point
of E so that p=(ay, as, - - - ) where (a, as, - - - ) is a permutation of
the positive integers, and let e>0. The sphere S(p, €) with center at
p and radius € consists of the points x = (xi, %3, + - -+ ) of E for which

1 ]a,.—x,.l

(2) dp, ®) = 2 = m

<e

Let N be a positive integer such that D ;.y4; 1/27<e. Then each
point ¢ of E which has the form

(3) q = (alv a2, * °*, ANy YN+1y YN42) ° ° ° )r

where the first NV elements of g are the same as the first # elements of
p and the remaining elements of ¢ constitute a permutation of the
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remaining positive integers, is such that
had 1 I ap — ynl
@) dprg)= 2 ———F—— <e
n=N+1 2” 1+ lan - ynl

and hence is such that ¢g&S(p, €). Now it is possible to rearrange the

series c(yn+41) +c(yn42)+ - -+ in such a way that the rearranged
series, say c(Yy41) +c(Whe2)+ - - - converges to
(5) a — [e(a) + c(as) + - - - + c(aw)]

and therefore the series

6)  clar) + c(as) + -+ - + c(an) + c(yn41) + c(ywea) + - - -

converges to a. Thus S(p, €) contains a point (a1, - - -, an, Yy+1
Yy+2 © -+ ) of A(a) and it follows that A(a) and 4 are dense in E.
To complete the proof of Theorem 1, it is sufficient to show that
S(p, €) contains a point of the set A’=E—A4. That S(p, €) contains
a point of A’ is a consequence of the fact that a permutation yj.,,
YN+2, - - - of the integers yn41, Y42, - - - can be chosen in such a
way that the series (6) is divergent and hence corresponds to a point
in A’. The fact that S(p, €) contains a point of 4’ is also a consequence
of the theorem of Agnew [1] that 4 is of the first category in E. This
completes the proof of Theorem 1. Our proof shows that 4(«), 4,
and A4 («)’ are also dense boundary subsets of E.

3. Properties of f. We now study the function f which, by the
procedure given above, maps the subspace 4 of E onto the real
number space E;.

THEOREM 2. The map or function f is everywhere discontinuous over
4.

If xo is in 4 and f(xo) =ay, then an easy modification of the proof
of Theorem 1 shows that if 6 >0 then the sphere S(x,, §) contains a
point x of 4 for which f(x) =a,+1. The conclusion of Theorem 2 fol-
lows.

THEOREM 3. The map f from A to E, is open in the sense that each
nonempty subset of A which is open in A is mapped into a nonempty
open set in E,.

Let 4, be a nonempty subset of 4 which is open in 4. Then there
exist a point p in A and positive number € such that 4, contains
ANS(p, €). But, as the proof of Theorem 1 shows, there corresponds
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to each real a a point x of ANS(p, €) for which f(x) =a. This shows
that the map of ANS(p, €) is the whole space E; of real numbers
and hence that the map of 4, is E,. Since E, is open, the conclusion of
Theorem 3 follows.

We conclude with a theorem which employs the definition under
which a map is said to be closed if the image of each closed set in the
domain space is a closed set in the range space.

THEOREM 4. The map f from A to E, is not closed.

We prove this theorem by constructing a closed set in 4 whose
image is the nonclosed set R of rational numbers in E;. Let 7y, 7.,
r3, - - - be a sequence in which each rational number appears once
and only once. Let ;= (x®, 27, - - - ) be a point of 4 such that the
associated series »_c(x%) converges to r; so that f(p1) =r.. For each
k=2,3,4,--,let

?k = (x:k)) x;k)y xB(k)v tte )
be a point of 4 which lies in the sphere S(p;, 27*) with center at p;
and radius 2—* and which has an associated series c(x®) +¢c(x®)+ - - -
which converges to r; so that f(xi) =rx. Since 27%—0 as k— «, the
sequence p1, ps, b3, + + - converges to its first element p;. Let A4; be
the subset of 4 consisting of the points p1, pe, ps, + -+ - . The set 4, is
closed because it contains its one and only limit point ;. However,
the map of 4, is not a closed set in the range space E; because this
map is the nonclosed set R of rational numbers.
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