
ON CONVERGENCE FIELDS OF NÖRLTJND MEANS1

ALEXANDER PEYERIMHOFF

A Nörlund mean N(p) is defined by

1    n / n \

(1) <r„ =-YjPn-vS,     (» ^ AwithP„ = X^ ^ Oforw ^ Aj.
En   »=,0 \ »—O /

If cr„ = s+o(l) when «—♦«>, the sequence {s,} (of complex numbers)

is said to be limitable N(p) to the value s. If o-„ = o(l), we shall write

sn(E.o(N(p)), denoting by o(N(p)) the set of all the sequences limitable

N(p) to zero. If o-„=a(l) when m—>=°,2 the sequence {s„} is said to

be absolutely limitable N(p), and we shall write sn(E.a(N(p)), denot-

ing by a(N(p)) the set of all the sequences absolutely limitable N(p).

A Nörlund mean is called regular if any convergent sequence

s„—*s is transformed by (1) into a convergent sequence o-„—>s. Nec-

essary and sufficient conditions in terms of the sequence {pn} (of

complex numbers) in order that (1) be regular are

(2) pn=0(Pn) (»-►«>),

and

(3) il\p,\ = 0(Pn) (n-x»).

Similarly a Nörlund mean is called absolutely regular if any se-

quence {sy} with s„—*s and s„=a(l) is transformed by (1) into a

sequence {<r„} with an—>s and <r„ = a(l), and N(p) is absolutely regu-

lar if and only if the conditions (2) and

2
V*) ne Max (fc,JV+l)

Pn-k Pn-l-J
g K,

Pn Pn-1

K independent of k (k = 1, 2, • • • ),

are valid.3
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s Similarly to the symbols o and 0 the condition an = a(b„) means that there is a

sequence {<*„} with an = anbn (reâ»o) and {<*„} absolutely convergent, i.e. XIIa"

—a„+i| < «J.

8 Cf. Mears [4] and Knopp-Lorentz [2],

335
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With any regular (respectively absolutely regular) Nörlund mean

N(p) there is associated a function p(z) = T"l" pnzn regular for \z\ < l.4

Consider now two Nörlund means N(p) and N(r) where N(p) is

regular while r(z) = ^o° W is regular for |z|gl with r(0)¿¿0,

r(l)?¿0. Then q(z)=r(z)p(z) belongs to a regular Nörlund mean

N(q). In this paper we shall ask for the relation between the con-

vergence fields of the Norlund means N(p) and N(r) on the one hand

and the convergence field of the Nörlund mean N(q) on the other

hand. We shall show that there holds a certain additive relation (the

following results are special cases of Theorem 1).

If r(z)^0for \z\ =1 and p(z)^0 for \z\ <1, then snEo(N(q)) if
and only if Sn = u„+v„ where unEo(N(r)) and vnEo(N(p)).

If we assume that N(p) is absolutely regular, then the Nörlund

mean N(q) is absolutely regular. There holds a similar additive rela-

tion if o is replaced by a.

If r(z)9¿0 for \z\ =1 and p(z)^0 for \z\ <1, then s„Ea(N(q)) if
and only if sn = un+vn where u„Eci(N(r)) and vnEa(N(p)).

In the case p(z) = 1 we are able to give explicitly all the sequences

of o(N(q)) respectively a(N(q)). Suppose that {rn} satisfies the con-

ditions of the first theorem above. Let ai (i = l, 2, • • ■ , k) be the

zeros of r(z) for \z\ <1, a< having the multiplicity 7¿>0. Then

SnEo(N(r)) if and only if sn = J2Ui (!/<*?) 23ÏÏ»1 CijA{+tn, where

i     (n + f\
tn = o(l),       An = I 1 (en = constant),

and this result remains true with a in place of o.

When r(z) is a polynomial, the o case of the last result recently was

proved by Petersen.6

We remark that the condition r(z)^0 for \z\ =1 is essential as is

easily seen6 from the example p(z) = 1/(1 — z), r(z) = l+zeia — T<â

<+t. If sn Eo(N(p)) =o(Ci), we have sn = o(n), and if snEo(N(r))

we have sH — o(n), but if s„Eo(N(q)) we have sn = o(n2) while sn = o(na)

is not true for any a<2 and all snEo(N(q)).

We shall apply our results to the methods of Cesàro and Riesz

(discontinuous), and we shall obtain the difference between the con-

vergence fields of these methods with index 2¿ + l (k an integer).

1. The main theorem. Consider a sequence {pn} of complex num-

bers with the property

4 The regularity of p(z) for \z\ <1 follows easily from Pn+i/P„ = X-\-o(\) because

of (2). Cf. Hardy [l, p. 65].
6 Petersen [5, Theorem 2.2, p. 452].

• By use of the Toeplitz theorem.
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,_.    po^O, and there exists a number N such that X"-o pv9*0 for

(5j    n^N.

Let Ao^O be the smallest number N with X"=o p>9á0 for n^N.

We define a sequence {Pn} by P„= X*=o P» for n^N0, Pn = i for

0^«<A0.7 If a sequence {pn} satisfies the conditions (5) and (2),

the functions X^»2" and X-P»2" are regular for \z\ <1 (because of

(2), cf. footnote 3), and if s„Eo(N(p)) or snEa(N(p)), where N(p) is

the Nörlund mean (1), the series X5»2" has a positive radius of con-

vergence.8

From (5) and (2) we obtain the relations

(6) pn+k  =   0(Pn), Pn+k/Pn  =   1  + £»(1)

(n->«,* = (), ±1, ±2, •••)•

Lemma 1. If an=a(l), ¿>„=a(l), then aH+bn = a(l), anbn = a(l). If

a„ = a(l) and a„—»ct^O, then a„x =a(l).

The proof of Lemma 1 is trivial.

If a sequence \pn\ satisfies the conditions (5), (2), and

(7) pn = a(Pn) (»-*»),

then we obtain by use of Lemma 1 the relations

,Q, Pn+k  =  0(Pn), Pn+k/Pn  =  o(l)

(»-> », k = 0, ±1, ±2, • • • ).

Lemma 2. Consider a sequence subject to the conditions (5) and (2).

Given a number e>0, there exists a number K~i with

(9)       | Pn+k/Pn\   á Ki(l + e)'*l for n ^ 0,       k = 0, ±1, ±2, ■ ■ ■ ,

Ki independent of k (P-i = P-2 = • • • = 0).

Proof. From (6) we obtain the relation 1/(1+e) ^ |P„+i/P„|

ál+6 for n^n0(e), and the estimation (9) follows by an easy con-

sideration.

Lemma 3. Consider a sequence [pn] subject to conditions (5), (2),

and (7). Given a number t>0, there exists a number K2 with

(io) X
Pn+k Pn+k ¿n+l+k

Pn n+l

^ A£ [ ¿I (1 +«)"*!/«• k = 0, ±1, ±2,

7 If we change a finite number of the numbers P„ in (1), the convergence field

o(N(p)) respectively a{N(p)) will not be altered. Therefore, in order to avoid some

(formal) difficulties, we define the numbers Pn so that Pn^O for »ä0.

8 Because of s(z) = X>»2" = (P (z))-lL.P»°-» 2», p (0) * 0. Cf. Hardy [l, p. 65].
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Ki independent of k (P_i=P_j= ■ • • =0).

Proof. From

(Pn+k/Pn — -Pn+1+fc/Pn+l)   =   (Pn+k/Pn+l+k ~ Pn/Pn+l)Pn+l+k/Pn

(where n+k + 1^0 in case k<0) the estimation (10) follows because

of (8) and (9).

Lemma 4. Consider a sequence {p„} subject to conditions (5) and (2).

If {d„} is a sequence with ^,Ç"\dn\ < °° for someÇ>1, then

(ID tw^-fW ^ ifbn  =  i°{Pn)
tn \Pn(d + 0(1))  (d  =   £ d.) \p„(l + 0(1)),

(12) fwu-f? i/^T
=í \Pn(d + 0(i)) lPn(l + 0(l)).

Proof. Because of (9) (with l+e<f) we have for any m=n+c

(C£0)

dr-n\ á*i¿(i + í)—|d^,| a^iZrl^l,

and from this estimation the relation (11) follows at once (observing

relation (6)). In a similar manner we obtain the estimation (12)

(notice that \dn/Pn\ ^K1(l+e)°\dn\ =o(í)).

Lemma 5. Consider a sequence {pA subject to conditions (5), (2),

and (7). // {dn} is a sequence with ^_,Çn\d„\ < » for some Ç>1, then

oo

(13) Z M,-n = a(P„) if bn = a(Pn),
v=n

and

n

(14) E M„-, = a(Pn) if bn = a(P„).

Proof. Consider a sequence ôn = a(l). From

Sn+kPn+k/Pn  ~  Sn+k+lPn+k+l/Pn+1

= S„+k(Pn+k/Pn —   Pn+k+l/Pn+l)  + Pn+k+l/ Pn+l(Sn+k — 5n+k+l)

(5, = 0 and P, = 0 in case y < 0)

we obtain (because of (9) and (10)) the relation



1956] ON CONVERGENCE FIELDS OF NÖRLUND MEANS 339

(15)     X
Pn+t Pn+1+*

On+k —--On+l+k g M,|é| (l + 6)i»
n=0 I Pn Pn+1

+A,(1 + i)l»IJE, ̂ K6(\k\   + l)(l + «)r*l,

(k = 0, ±1, ±2, • • • ) with K~i independent of k.

Putting bn = hnPn and ßn= XX« (b,/Pn)d,-n we have

ßn — ^n+1  =   2-J ( ^«+»  —~-S„+l+,   ——- I d„
1—0 \ Pn Pn+1   /

and by use of (15) we obtain

00 00

X|/Sn-0n+1|    á  ABX("+l)(l+«)"k|    =*e        (l+«<r).
n-0 v=0

which proves (13).

By use of (15) we obtain (14) in a similar manner.

Lemma 6. Let r(z) = Xr«zn oe convergent for \z\ gp, p>l, r(0)?¿0'

r(l) ?*0, and define q(z) by q(z) =r(z)p(z)(q(z) = Xs»2", P(z) = X^»2")-
(i) If {pn} satisfies conditions (5) and (2), then {qn} satisfies (5)

and (2), and the relation

(16) Qn/Pn  =   r(i)   + 0(1)

is true. (Because of (5) the sequence {Qn} may be generated by {qn} in

the same way as is {Pn} by {p„}.)

(ii) // {pn} satisfies conditions (5), (2), and (7), then {qn} satisfies

(5), (2), and (7), and the relation

(17) Qn/Pn = a(l)

is true.

Proof. Putting <2„*= X?-o q„ PÍ- IXo P. (P«*=Pn for ntNBy
we have the relation

(18) Q* =   Ê P,*fn_..

If {/>„} is subject to conditions (5) and (2), we obtain from (18) by

(12) the relation

(19) Q*/Pn* = r(l) + o(l) (n->«>),

and therefore {<?„} satisfies the condition (5) (notice that qo=ropo).

Considering qn/Qn = qn/Pn • Pn/Qn we obtain the statements of the
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lemma from the relation qn = XXo Ps*-*, by (19), Lemma 4, Lemma

5, and Lemma 1.

Lemma 7. Let p(z) = Z^»2" be convergent for \z\ <1, and define p(z)

by p(z) = (l—z/a)kp(z) with 0 < | «| <1 and k>0 an integer.

(i) If {pn} satisfies conditions (5) and (2), then {pn} satisfies (5)

and (2), and the relation

(20) Pn/Pn = (1 - Va)~" + o(l)

is true. (For the definition of P„ cf. Lemma 6 (i).)

(ii) If {pn} satisfies conditions (5), (2), and (7), then {pn} satisfies

(5), (2), and (7), and the relation

(21) Pn/Pn  =   «(1)

is true.

Proof. Suppose first k = l. Putting P„*=Z?«o p. (P*=Pn for

n^Na) and P„*= Z?-o P*, we obtain from p(z) = (l—z/a)-1p(z) the

relations

In oo

(22) pn = — Z M" = -   X)   M"~" (because of p(a) = 0),
<Xn v=0 r=n+l

and

In oo

(23) Pn* = — Z P *«" = ~ Z P**~H for « è Aro.
a    ,=a i—n+1

If {p„} is subject to conditions (5) and (2), then we obtain from

(23) by (11) (putting dn=au+l) the relation

(24) P*/Pn = (1 - 1/a)-1 + o(l),

hence (because of pa=Pa) {pn} satisfies the relation (5). Considering

Pn/Pn = pn/Pn • Pn/Pn we derive the statements of the lemma from

(22) and (24) by Lemma 4, Lemma 5 (putting dn =ctn+l), and Lemma

1.
For k>\ the result follows by induction.

Lemma 8. Consider a function p(z) = Zp»2"> regular for \z\ < 1, and

a number a with 0 < | a\ < 1. Suppose that p(z) has a root of multiplicity

Xi=0 for z=a (i.e. p(z) = (1 — z/ctYh(z) where h(z) = Z^«2" ¿s regular

for \z\ <1 and h(a)^0), and define q(z) by q(z) =(l—z/a)p(z).

(i) // {pn} satisfies conditions (5) and (2), then {qn} satisfies condi-

tions (5) and (2), and s„Eo(N(q)) if and only if
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in - tn + C

a\
a

(25)

1,6
/  x      /n + \\ \

o(N(p)), I An = I 1, c = constant).

(ii) If {pn} satisfies conditions (5), (2), and (7), then {qn} satisfies

conditions (5), (2), and (7), and snÇia(N(q)) if and only if

(26) Sn = tn + c(An/a»), tn G a(N(p)).

Proof. Suppose that {pn} is subject to conditions (5) and (2). By

Lemma 6 the sequence {q„} satisfies conditions (5) and (2). Consider

a sequence Sn€zo(N(q)). The series s(z) = X5«2" has a positive radius

of convergence, and we define a function t(z) = X^«2" by ¿(2) =s(z)

— c(l— z/«)_(X+1> (e = constant). Putting q(z)s(z) =a(z) = Xa«2"

(an = o(Q„) because of snÇ=.o(N(q)), so that a(z) is regular for \z\ <1),

we have

p(z)t(z) = -^— (s(z) - c(\ - */«)-<*«>) = —i— (a(z) - ch(z))
1 — z/a 1 — z/a

X °nZn (°n =  «n — CÄ»).
1 — z/a

If we put c = a(a)/h(a), we have

00 00

(27) P(z)t(z) = - X2"  X)   fr"«"""" (because of X M" = 0).
n=0        p—n+1

From (16) and an = o(Qn) we obtain an = o(P„), and by use of

Lemma 7 we have

(28) Ä„   =   0(Pn),

so that bn = o(Pn), and from this estimation we get

00

(29) X b*r- = o(Pn)
»-n+l

by Lemma 4. As is seen from (27), the estimation (29) means that

LGo(N(p)).
It remains to show that any sequence (25) is contained in o(N(q)).

If tnEo(N(p)) we have ^>(z)t(z) =b(z) = X^«2" with &„ = o(P„). Put-

ting q(z)t(z)=a(z) = Xan2" = (l— z/a)b(z), we obtain an=o(Pn) (by
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use of (12)), and because of Q„=Pn(l — l/a+o(l)) (by Lemma 6) we

have an = o(Qn) so that tnEo(N(q)).

Finally we have A„/anEo(N(qn)) because of q(z)- ZiT-o (A\/an)zn

= h(z), (28), and (16).
Writing a instead of o, the proof of (ii) runs in exactly the same lines

as the proof of (i).

Lemma 9. Consider a function p(z) = Zp«2"» regular for \z\ <1, and

a function r(z) = Zr«2"> regular for \z\ ^1 with r(z)^0 for \z\ £1.

Define q(z) by q(z) =r(z)p(z).

(i) If {pn} satisfies conditions (5) and (2), then {qn} satisfies con-

ditions (5) and (2), and we have o(N(p)) =o(N(q)).

(ii) If {pn} satisfies conditions (5), (2), and (7), then {qn} satisfies

conditions (5), (2), and (7), and we have a(N(p)) =a(N(q)).

Proof. Suppose that {pn} is subject to conditions (5) and (2). By

Lemma 6 the sequence {q„} satisfies conditions (5) and (2). Consider

a sequence s„Eo(N(p)). Putting

P(Z)S(Z)   =  a(z)   =   Z dnZn(s(z)   =   Z SnZn),

we have an = o(Pn). Putting g(z)5(z) =b(z) = ^2bnzn = r(z)a(z) we have

the relation

n

(30) bn =   Z <Vn-,.
p-a

Using Lemma 4, we derive from (30) the relation b„ = o(Pn), and by

Lemma 6 we obtain bn = o(Qn). Hence we have s„Eo(N(q)) and there-

fore o(N(p))Qo(N(q)). From p(z)=r(z)~1q(z) where r(z)~l satisfies

the same conditions as does r(z), we obtain the relation o(N(q))

Qo(N(p)), and this yields the result desired.

The proof of (ii) runs in exactly the same lines as the preceeding

proof of (i).

The following theorem is obtained by a combination of Lemma 8

and Lemma 9.

Theorem 1. Consider a function r(z) = Zrn2"> regular for \z\ £1,

r(z)?é0 for z = 0 and \z\ =1, and having inside the unit circle the roots

ai • • ■ a, with the multiplicities 71 • • ■ yK

(i.e. r(z) = II (1 - z/c*i)yiri(z) whererx(z) 5^ 0/or \z\ Ú 1, 7, > oV

Let p(z)=Zpn2"  be a function regular  for   \z\ <1  and suppose
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that a< (i.e. the ith root of r(z)) is a root of p(z)  with multiplicity

Xi^O (i = i, 2, • • • , k). Define q(z) by q(z)=r(z)p(z).

(i) // {pn} satisfies conditions (5) and (2), then sn^o(N(q)) if and

only if

«        1   X.-+7Í-1

Sn tn "j-   7 . / .     CijJLn,

(3D

tn G o(N(p)), i An = [ j,  dj = constant).

(ii) // {pn} satisfies conditions (5), (2), and (7), then s„(E.a(N(q)) if

and only if (31) holds with tnCza(N(p)).

In case (i) the sequence {qn} satisfies conditions (5) and (2), and in

case (ii) the sequence {qn} satisfies (5), (2), and (7).

Proof. Considering the functions

(1 - z/ai)p(z), (1 - z/ai)2p(z),   • • • , (1 - «/«0n#W,

(1 - s/a,)(l - z/ai)^p(z), • • • , IÍ (1 - z/at)y<p(z) = p*(z),
»=1

we obtain by a repeated application of Lemma 8 the result that the

convergence field of p*(z) is given by (31) (respectively by (31) with

tn£za(N(p)) in case (ii)). By Lemma 9 the convergence fields of the

Nörlund means belonging to p*(z) and ri(z)p*(z) =q(z) are not differ-

ent.

Finally we shall show that the theorems stated in the introduction

of this paper are special cases of Theorem 1(. These theorems deal with

regular (absolutely regular) Nörlund means while the weaker condi-

tions (5) and (2) ((5), (2), and (7)) imply that the A(£)-transforma-

tion of any sequence {sn} with s„ — 0 for all large n tends to zero

(tends to zero and is absolutely convergent).

Given a regular (absolutely regular) Nörlund mean9 N(p) and a

sequence {r„} such that r(z) = Xr»2" 's convergent for \z\ :gf, f >1,

r(0)9£0 and r(l)^0, then by q(z)=r(z)p(z) a regular (absolutely

regular) Nörlund mean N(q) is defined. In fact, suppose that s„ = o(l)

(s» = o(l) and s„ = a(l)).10 Putting

n

(Tn  =   (1/Pn)   X Pr>-'S'

9 And {pn} subject to condition (5).

10 Obviously it is sufficient to consider only sequences tending to zero.
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we have

n n

Z qn-,s, = Z **n-»P»ffr = o(P„)(= o(Pn)    and    = a(P„))

by Lemma 4 (Lemma 4 and Lemma 5) because of o-„ = o(l) (a„ = o(l)

and c„ = a(l)) and from (16) ((16) and (17)) we obtain the relation

Z"=o qn-,s, = o(Qn) (=o(Qn) and =a(Qn)) q.e.d.

If we put p(z) = 1, the last theorem of the introduction follows at

once from Theorem 1, and combining this result again with Theorem 1

we obtain the first and the second theorem of the introduction (the

second term in (31) (with A¿ = 0) plus all sequences tending to zero

represents all sequences belonging to o(N(r)), similarly in the ab-

solute case).

2. An application. As an application of Theorem 1 we shall investi-

gate the convergence fields of the Cesàro means Ck = N(p) with

(n + k - 1\
Pn =  ( n ) (k>0),

and the discontinuous Riesz means R^ = N(q) with qH = (n + \)k — nk

(k>0). We shall assume that k is an integer. The sequences {pn} and

{qn} thus defined satisfy conditions (2), (5), and (7), and Ck is con-

nected with the function p(z) = 1/(1—z)* while R„ is connected with

the function

" (d   y     1 Pi-i(z)
(32)  q(z) = (1 - z) Z (» + l)*2" = (1 - 2) (- 2)-= -Z-rt'

n=o \dz   /   1 - z      (1 - z)*

P*_i(z) being a polynomial of degree k — l (this follows easily by

induction from P„ = 1, Pi = 1 +z, Pi = 1 +4z+z2).

From (32) we obtain the relation q(z) =Pk-i(z)p(z), and therefore,

in order to apply Theorem 1, we have to investigate the distribution

of the roots of P*_i(z).n

Lemma 10. The polynomials Pk(z) (k = 0, 1, ■ ■ • ) are reciprocals,

i.e.Pk(z)=z"Pk(l/z).

Proof. Starting with Po(z) = 1, we proceed by induction. Assuming

that P*_i(z)=zi-1PA;_i(l/2) (¿el), we have for jfe^l the relation12

11 Some properties of the function 53 (» + 1)*«" (including the distribution of the

roots) have been investigated by Lawden [3]. Here we shall give a short proof of

those properties of the roots of -Pt-i(z) we need for our purposes.

» Because of the (formal) relation (¿/¿f)/(f)| f_i/.= -x1(d/dx)f(l/x)\x^t.
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iy+2 d    fiVi(r)'•e-o-indi (1 - t)k+l r=i/í

-'('-I)
-- («4)"-

dz   (1 - l/a)*+»

1\*+2 d    zPk-i(z)

Tz (z- l)k+l

4+2 Pk(z) 1
l)t+i-L^ = _Pa(2).

(l-z)*+2      zk

Lemma 11. All roots of Pk(z) (ks^O) are located on the negative real

axis. Exactly k different roots of P2k(z) and P2k+i(z) are contained in any

of the intervals — <x> <z<— 1, — l<z<0, and we have Pik( —1)^0,

P»+i(-l)=0.

Proof. Putting fk(z) =P*(z)/(l-z)*+2 we have fk+i(z) = (zfk(z))'

(zy*l), and by integration the formula

(33) fk+i(x)dx = bfk(b) — afk(a)      (xreal, a < b < + 1, k 0).

From (33) we derive at once the following properties of Pk(z) :

(i) Given two real numbers a and ß with a <ß<0 and Pk(a) =Pk(ß)

= 0, there exists a real number 7 with o<y<ß such that Pk+i(y) =0

(put a=a, b = ß in (33)).

(ii) Given a real number a<0 with P*(a)=0, there exists a real

number 7 with a <7<0 such thatP*+i(7) =0 (put o=0, a=ain (33)).

Starting with Pi(z) = 1+z and proceeding by induction, we obtain

the result desired by an easy consideration from (i), (ii), and Lemma13

10 (observe that Pk has at most k different roots).

Using Lemma 11, we derive from Theorem 1 the following

Theorem 2. A sequence {sn} is an element of o(R„t+l) (k^0 an

integer) (a(R„t+1)) if and only if

Sn   =   tn  +   X   -' ¿a ^  o(C2k+l)(tn G  o(Cik+l))

where c¿ (i = í, 2, • • • , k) is constant and the numbers a¿ are the roots

of Pik(z) located inside the unit circle.

It may be of some interest to have an estimation for the modulus

of the smallest root of P*(z).

18 By Lemma 10 we have ¿Vii-l) =0 and P*(l/2o) =0 if Pkfo) =0.
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Lemma 12. Let a0(k) denote the root with smallest modulus of Pk(z).

Then we have the estimation

i±*)ä|wW|aii±iil>2*+i '     v ' ' 2*+1

(34)

(with 1 + o(l) =-Y
V 1 - (k + 2)/2*+V1 - (k + 2)/2*+V

Proof. From (32) we have P*(0) = 1 and therefore

paz) = n (2 - «o

(k^l, observe Lemma 10 and ao = on = l (because of Lemma 11)).

Considering the logarithmic derivative of this identity we obtain

PI (z)/Pk(z) = - Z 2" Z 1/***     I 21 being small.

From PÍ(0)/P*(0) = Z?-il/|«i|4/|«o(¿)| áZ?-iVk| ^/|«o(¿)|
and P¿ (0) = 2*+1 — (k + 2) (this relation follows by an easy calculation

from (32)) we obtain (34).

Finally we consider the Nörlund mean N(p) defined by pa = kk,

pn = (n+k)k — (n-l+k)k, w^l (k>0 an integer). We obtain this

mean from R$ omitting the first (k — l) elements of the sequence

{pn}.u Similarly to (32) we have for p(z) the relation

* 1    (d   Y   z*"1
p(z) = (1 - z) Z (» + k)H" = (1 - z) —(t-2)   ~—

(35) ""° Z      V      ' Z
Q*(2)

(1-z)*'

We have (M2) = l> (M2) = 22-3z+4, Qs(z) = -8z3+31z2-44z+27,

& (z) = 81z4 - 389z3 + 731z2 - 655z + 256, Q6 (z) = - 1024z6 + 5901z4
- 13934z3+17026z2 - 10974z+3125.

By numerical calculation we obtain the following roots of smallest

modulus

Q2: z0 = 1.5 + ¿1.32 • • • ,        ( = 3/2 + ¿71'2/2),      \ z012 = 4,

Q3: za = 0.9710 + ¿0.8961 + e,        | e |  < 3.10~>,     | z012 = 1.74 • • • ,

Qi: za = 0.80299 + ¿0.71437 + t,     \ e \  < lO"6,       | z012 = 1.155 • • •,

Q6: za = 0.72034 + ¿0.60896 + e,     | e \  < 5.10"5,

14 A Nörlund mean of this kind has been considered by Riesz [6].
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From Theorem 1 we see that the means N(p) are equivalent with

Ck for k = l, 2, 3, 4, but not for k = 5 (and probably, not for any

tfcS).
Bibliography

1. G. H. Hardy, Divergent series, Oxford, 1949.

2. K. Knopp and G. G. Lorentz, Beiträge zur absoluten Limitierung, Archiv der

Mathematik vol. 2 (1949) pp. 10-16.
3. D. F. Lawden, The function 2~Lnr¡!" and associated polynomials, Proc. Cam-

bridge Philos. Soc. vol. 47 (1951) pp. 309-314.
4. F. M. Mears, Absolute regularity and the Nörlund mean, Ann. of Math. vol. 38

(1937) pp. 594-601.
5. G. M. Petersen, A note on divergent series, Canadian Journal of Mathematics

vol. 4 (1952) pp. 445-454.
6. M. Riesz, Sur l'équivalence de certaines méthodes de sommation, Proc. London

Math. Soc. vol. 22 (1924) pp. 412-419.

University of Giessen

REARRANGEMENTS OF SERIES

H. M. SENGUPTA

1. Introduction. Professor R. P. Agnew [l] and the author [2]

have considered the metric space E of points x=(xi, x2, x3, • • • )

where the complex (xi, x2, x%, • ■ • ) is a permutation of the positive

integers and the distance between two points x and y is defined by

(1) d(x, y) = 2^ — 7-7—1-f •
n=l   2"   1 +   I Xn - yn I

Starting with a given conditionally convergent series X»-i c« of

real terms, we associate it with the point (1, 2, 3, • • • ) of the space

E. Following Professor Agnew, we sometimes write the series Xe»

in the form Xc(w)- With a given rearrangement of this series, say

c(ni) +c(n2) +c(n3) + • • • , we associate in a unique manner the point

z = («i, n2, n%, • • • ) of the space E. For instance the rearranged series

C2+C1+C4+C3+ • • • is associated with the point (2, 1, 4, 3, ■ • • )

of E. Conversely, with a given point z = («1, »2, • • • ) of E we associ-

ate the rearrangement c(ni)+c(n2)+ • • • of the given series, and if

the rearrangement converges to a we shall say that the series which

corresponds to the point z converges to a.
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