THE PONTRJAGIN RING FOR
CERTAIN LOOP SPACES

ARTHUR H. COPELAND, JR.

Suppose A4 is a principal ideal ring and G is a graded A-module.
Then an algebra T*(G) is described. This is called the tensor-torsion
ring of G. If X is a 1-connected space of Lusternik-Schnirelmann
strong category two and Q the space of loops on X then Hy(Q2; 4)
=T*(Xm-s Hu(X, 4)).

1. The tensor-torsion ring. Let C be a free A-module with endo-
morphisms d, k such that

az =0, dk = — kd.

Let T(C) designate the tensor ring of C [2]. Thatis, T(C)+= D ;.o C™
when C™ is defined by

CO =4,

C(n) =C®C(ﬂ—l) forn>0
and products on T(C) are induced by: if c€EC™, /E€C™ then
c-¢'=c®c EC™ (where C»® C is identified with C®*+m via the
obvious rearrangement of parentheses). The tensor products are

taken relative to 4.
Next, define the endomorphisms d,: C™—C® by:

do(a) = 0, aEA=CO,
di(c) = de, cEC =CW,
d(c®Cc)=dc®c + kc @ dusc, cECW, ¢ € CtrD,

These are extended linearly to give D: T(C)—T(C). Note that D is a
ring endomorphism with D?=0. Set

Z = Z(T(C)) = Ker D,

B = B(T(C)) = Im D.
It is easily seen that Z is a subring of T(C) and B is a 2-ideal in Z.

Thus Z/B=H(T(C)) is a ring.
We shall say that a group is A-free when it is a free 4-module.
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1 A portion of this paper is taken from the author’s doctoral dissertation, Massa-
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PRrOPOSITION 1. If G= D vy G* is a graded A-module then there is
an A-free chain group C= Y m o C* such that G* ~H(C).

ProoF. Let Z» be a free A-module with generators in 1-1 corre-
spondence with the elements of G*. This correspondence may be
uniquely extended to a homomorphism 6*: Z»—G". We define:
Br=ker 6, W1 (n20) a group isomorphic to B* with d: W»+1—B»
the isomorphism, and W°=(0). Set C*=Z*® W* and d(z, w) = (dw, 0)
for z€2*, w€W", n20. Then d?=0 and Z*/B*=H"(C) ~G".

The endomorphism %k on C is now taken to be kc=(—1)" for
¢&C". In terms of this notation:

We set T*(G) =H(T(C)). T*(G) s called the tensor-torsion ring (or
algebra) of G.

The excuse for calling T*(G) the tensor-torsion ring of G is that the
additive structure of T*(G) is D_mo H(C™) which by the Kunneth
formula contains, as subgroups, isomorphic images of all combina-
tions of tensor and torsion products of G with itself. The multiplica-
tion in T*(G) is essentially the tensor product.

ProrosiTiON 2. If C, C’ are A-free chain groups and homomorphisms
6*: H,(C)—H,(C") are given for each n=0, then there is a chain map
0O: C—C’ which induces the homomorphisms 0",

ProoOF. Let d, d’ be the boundary homomorphisms on C, C’ respec-
tively and ¢: Z"—H,(C), ¢': Z'—H,(C') the natural projections
from the cycle groups. Since Z* is A-free, we may pick a basis A*C Z».
If a& A", let fra be an element of (¢')~'0¢c. Extend f* to g*: Zr—Z'",
But Z#, Z'" are direct summands of C», C'*; let W» be a subgroup
such that C*=Z"@W" and define W'* similarly. Define h"(w)
= (d'| W) ~log"lod(w) for wE W*. Extend {g", k*} to ®: C—C". It
is immediate from the construction that ¢’® =0d and that © induces
{o-}.

PrOPOSITION 3. If C’' is an A-free chain group, {G*|n=0} is a
collection of A modules and H,(C') is isomorphic to G* for all n=0 then
H(T(C")) is ring isomorphic to T*( D_G,).

Proor. Let6": G*—H,(C’) be the isomorphism. We construct C as
in Proposition 1, and ®: C—C’ as in Proposition 2. Then ©: T(C)
—T(C’) given by (@l CM=0Q - ®O is a ring homomorphism
commuting with the boundary homomorphisms. By the Kunneth
theorem, ©x: H(C®) =~ H(C'®) and hence Ox: T*( D_G,) ~H(T(C")).

2. The spaces X and Q: notation and preliminary remarks. X is a
1-connected topological space of Lusternik-Schnirelmann strong
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category two. That is, there are closed subsets Xi, X, and maps
Ry, Ry: X XI—X such that

X = X]_UX;,
Ry(x,0) = = (forx € X,i=1,2),
R(X:iXI)CXi R{(XX1)=xEXiNX.

Since X is 1-connected, it imposes no additional restriction to assume
Ri(xoXI)=x,. We shall, however, impose the restriction that
(X; X1, X;) is to be a proper triad. In addition let

Xo=X1NX,,
E = (X, %0)I'V; p: E— X is the fibre map given by p(f) = f(0),
Q = p7(x0),
E; = p7(X)) (1=0,1,2),
pi: X: = E;by pi(%)(f) = Rz, ) forx €E X, t €1 (i = 1,2),
po: Xo — Q by po(x)vp1() * pa(x) for £ € Xo (v is defined below).
If f, g are paths in X with f(1) =g(0) then f g is the path

_f ), 0<t=<1/2,
I8 = {g<2t — ), 125151,

If f is a path in X then »f is the path given by »f(f) =f(1—1?).

The homology theory used here is the cubical theory, with co-
efficients in the principal ideal ring 4, described below:

An n-cube of a space X is a map u: I"—X. We say a cube is de-
generate if there is an integer 4, 1 S¢<#, such that u(f, - - -, tio, £,
tivt, =+ oo ba) =t -+ + ) bic1, 0, bigr, + -+, ta) for 0421, Qu(X) is
the free A-module generated by n-cubes; D.(X) the subgroup of
0.(X) generated by degenerate cubes and Ca(X)=Q.(X)/Da(X) is
the group of cubical #-chains of X. If 1<i<#n and 0<e=<1 then \;
is the ("_1)'CUbeyx§.eu(tlr st vtn——l)=u(tly SRR ZIR B PR 1tn—l)°
The boundary on C,(X) is induced by

ou = 2, (—1)i(\iw — N ot).
[
The homology groups given by this theory are isomorphic to the
corresponding singular homology groups [1].
If u: I»~Q and v: I"—Q then w+v: I*—Q is defined by
usv(ty, « + -, tprg) =%ty + -+, tp) #9(tpa, -+ + , tptg). This induces a
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pairing C,(Q) @ Co(2)—Cp1,(R), which yields the Pontrjagin product.

PRrOPOSITION 4. Let F;: E,—X:XQ and G;: X;XQ—E; (1=1, 2)
be given by

F{f) = (6(f), ves(p(N+ ), f EE,

Gi(xrf) = Pi(x)*f’ xGX,-,fGQ.

Then (F;, G;) are homotopy equivalences between E; and X;X<.

Furthermore, when restricted they form homotopy equivalences between
Eo and X 0 XQ.

PRrooF.

Fs' OGi(xi f) = (x) VPi(x) * (pi(x) l‘f))’
G:ioFi(f) = (p:(p(f)) * (wps(p(f)) + ).
The homotopies of these maps to the identities are set up in the ob-

vious manner.
Consider the following diagram:

Hoa(0; ) ZHAE 0 M) H(X X9 5 X 9 M)
i 1 (B X 9)x
H.(E, E1; M) H (X X QX1 X Q; M)
T i / T (s X 1)«
Hn(Es, Ey; M) —— H, (X3 X @, Xo X @; M)
1d. " 18

Ho1(Eo, @5 M) — Hy y(Xo X ©, %0 X 25 M)

M is an A-module.

9, is the boundary homomorphism for the pair (E, Q). It is an
isomorphism for #>0 since E is contractible.

i1: (E, Q) C(E, E,). Since X, is contractible, we have H,(E,,
Q) =0 for =20 and ¢ is an isomorphism (let r:(f)(¢) = R.(f(¢), 1);
then 1% =i1¢—1).

19t (E2, Eo) C(E, E;) induces the isomorphism 7y by excision.

3. is the boundary homomorphism for the triple (Ez, Eo, Q). Since
X, is contractible we have H,(E,, 2)=0 for 20 and 9, is an iso-
morphism.

F,,, F;, are induced by F.. Using Proposition 4 and the five Lemma,
it is easy to see that these are isomorphisms.

1: QCQ.
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152 (X, %0) C(X, X1). Note that (44 X%)« is an isomorphism.

730 (X2, Xo) C(X, X1); (43X1%)x is an isomorphism by excision.

0; is the boundary homomorphism of the triple (X2XQ, XoX%,
%0 XQ); 83=Fj; 0 8; 0 (Fj4)~! is an isomorphism.

We now have (14 X%)5" 0 (43 X4)x 0 Fjy 0 414 0 97" is an isomorphism
from H(Q; M) onto H,((X, x0)XQ; M) and y=09; 0 (41+)~! 0 42«
0 Gjx 003! is an isomorphism from H,((Xo, xo)XQ; M) onto
H,(2; M) for n>0. This is a generalization of a lemma by G. W.
Whitehead [3, p. 212].

3. The main theorem. We set C= X,_, C.(X,, x0) and suppose
that M=A. To make the arguments that follow less cumbersome we
replace the chain groups of the product spaces discussed in §2 by the
tensor products of the chain groups of these spaces. The symbols
formerly used to designate continuous functions should now be read
as the corresponding chain maps.

LEMMA 5. Let 7: CQ C(Q)—C(Q) be given by #(u®v) =pou xv. Then
7 induces the isomorphism v.

Proor. Let # be a p-cube of (X, x0) and v a g-cube of 2. We define
B: C(Xoy, %0)RC(Q—Co1(X2, Xo)®C(Q) as follows. Let
Wty « v oy b)) = —Ra(ulty, - - -, tpr1), 1) EQp1(Xs, Xo). Then &
is given by ®;(#®v) =4'®v. Note that dP1(¥®v) =4 Qv —P:0(¥Rv)
modulo degenerate cubes and so ®; induces 9;'. Thus (3, 0 7, 0 %2
0 Gz 0 ®;)x =7. Next,

(r104,0G20 &1(# ® v)) = 710 1,0Gx(0%:1(» ® v))
=7,0%0G(# ® v) — 7,01,0G2®:10) (4 @ v)

= r(pa#*v) — r,0120G20 $,9(u ® v)

which is a chain in Cpy((E). Let ®5: C,1(E)—C,(E) be given by

Sow(t, -+ ¢, L)) = Ri(w(ly, - - -, t)(la(ty, 1)), ha(ty, £))
when w: I"'>E and hy, hy: I?*—I are maps such that
¢ fors=0, 0=¢t=1,
ha(s, ) =4 0 s=1, 0=51=<1/2,
2% —1 s=1,1/2<t<1,
1 s=0, 0=2¢t=1,
R(s, f) = {1 — 2 s=1, 0<t<1/2
0 s=1,1/25t= 1.
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Thus we have d®;w+P.0w = (vo1pw) *+ w—rw. In particular, setting
w=pas xv, n=p-+g+1 we have

(0P2 + 99)(p2u+v) = (vp1ts) * (pathx v) — r1(paté* v).

Finally there is a homotopy of @ into itself sending (vp1(x)) * (os(x) *f)
into po(x) +f when x€ X,, fEQ. Combining these homotopies yields:
there is a homomorphism

®: Cp(Xo, %0) @ Co(Q) = Cpior1(D)
such that
(0® + ®3)(u @ v) = (d07r,0%20G20 P1)(4 @ v) — (pot) +v.

Hence the homomorphism 4 induces 7.

Let 7,: C™®—C(Q) be defined by 7¢(a) =awo (Where wo is a basic
0-cocycle of @ and a€EA=C®), 7,(c1® + + + @Cn)=poc1* * * * *poCn
for n>0. Extend {n.} ton: T(C)—C(Q); this is a ring homomorphism
commuting with the boundary operators and hence induces 7«:
T*(H(Xo, x0))—H(Q).

PROPOSITION 6. 7« s an isomorphism.

Proor. Note that T(C) is graded by dim e¢=0 if aECO,
dim  (cn,® -+ * Cn)=m+ - -+ +n, when c.,;ECoi(Xo, x0)
(¢=1, - - -, k), and 5 preserves this grading. The proof now goes by
induction on this dimension.

Clearly ns: Ho(T(C)) =Ho(Q). Next suppose nx: Hn,1(T(C))
~H, 1(Q). Since Hy(CW)=0, it follows that H,,(T(C))
=H,_1( X p<n C®). Thus for n 21, H.(T(C)) = Ho(CO® D_pen CP).
Using the induction assumption,

(1 @ na_r)s: Ha (Cm ® ch) ~ H.(C ® C(Q)).
p<n

From Lemma 5,

ix: Ho(C @ C(Q) = H,(DQ).

But 70(1®%4-1) =7, and so we have 7x: H,(T(C)) =~ H,(Q).
Since H,(X) ~H,_1(X,, x0) for n=1 we may reword this proposi-
tion to read:

THEOREM 7. If X is a 1-connected space of Lusternik-Schnirelmann
strong category two and Q the loop space on X then the Pontrjagin ring
Ho(Q) is isomorphic to T*( D m-y Hu(X)).
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In case G is torsion free, the torsion products in 7#(G) vanish so
that T*(G)=T(G). Thus if He(X) is torsion free we have Hy(Q)
~T(H«(X, x0)). This result was known to Bott and Samelson [1].
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