
THE PONTRJAGIN RING FOR
CERTAIN LOOP SPACES

ARTHUR H. COPELAND, JR.1

Suppose A is a principal ideal ring and G is a graded A -module.

Then an algebra T*(G) is described. This is called the tensor-torsion

ring of G. If X is a 1-connected space of Lusternik-Schnirelmann

strong category two and 0 the space of loops on X then iï*(0; A)

= T*(T,^2Hn(X,A)).

1. The tensor-torsion ring. Let C be a free A -module with endo-

morphisms d, k such that

¿2 = 0,        dk = - kd.

Let T(C) designate the tensor ring of C [2 ]. That is, T(C)+= J2«=o CM
when C(n) is defined by

C<°> = A,

C<"> = C ® C<"-" for n > 0

and products on 7\C) are induced by: if cEC(n), c'EClm) then

cc' = c<gic'£C(n+m) (where C(n) <g> C('m) is identified with C(n+m) via the

obvious rearrangement of parentheses). The tensor products are

taken relative to A.

Next, define the endomorphisms dn: C(n>—»C(n) by:

do(a) =0, aEA = C<°>,

di(c) = dc, cEC = C<1\

dn(c <g> c') = dc (8) c' + ¿c ® dn-ic', c G C*1', c' G C'""1'.

These are extended linearly to give D: T(C)—*T(C). Note that D is a

ring endomorphism with .D2 = 0. Set

Z = Z(2XO) = Ker 7J,

B = JB(r(0) = Im D.

It is easily seen that Z is a subring of T(C) and 5 is a 2-ideal in Z.

Thus Z/B=H(T(Q) is a ring.
We shall say that a group is 4-free when it is a free A -module.
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1 A portion of this paper is taken from the author's doctoral dissertation, Massa-
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Proposition 1. If G= 23"-o G" is a graded A-module then there is

an A-free chain group C= 23^-o Cn such that Gn^Hn{C).

Proof. Let Zn be a free ^-module with generators in 1-1 corre-

spondence with the elements of Gn. This correspondence may be

uniquely extended to a homomorphism 6": Zn^>G". We define:

Sn = ker 6", Wn+l («^0) a group isomorphic to Bn with d: Wn+l^>B"

the isomorphism, and W° = (0). Set C = Zn®Wn and d{z, w) = {dw, 0)

for zGZn, wGW", «£0. Then d2 = 0 and Zn/Bn=Hn{C) ~Gn.

The endomorphism k on C is now taken to be kc={ — l)nc lor

cGCn. In terms of this notation:

We set T*{G)=H{T{C)). T*{G) is called the tensor-torsion ring {or

algebra) of G.
The excuse for calling T*{G) the tensor-torsion ring of G is that the

additive structure of T*{G) is 23»=o H{CW) which by the Kunneth
formula contains, as subgroups, isomorphic images of all combina-

tions of tensor and torsion products of G with itself. The multiplica-

tion in T*{G) is essentially the tensor product.

Proposition 2. If C, C are A-free chain groups and homomorphisms

6n: Hn{C)—>Hn{C) are given for each «^0, then there is a chain map

0: C—*C which induces the homomorphisms Qn.

Proof. Let d, d' be the boundary homomorphisms on C, C respec-

tively and fa: Zn->Hn{C), fa: Z'n-*Hn{C) the natural projections

from the cycle groups. Since Z" is A -free, we may pick a basis A"GZn.

If aGAn, let fna be an element of (</>')-"ttya. Extend/" to gn: Zn^>Z'n.

But Z", Z'n are direct summands of O, C'n; let Wn be a subgroup

such that Cn = Zn®Wn and define W'n similarly. Define hn{w)

= (d'| W'n)-1og"-1od{w) for wGW". Extend {gn, hn} to ©: C->C. It

is immediate from the construction that d'@ = Od and that © induces

{*"}•

Proposition 3. // C is an A-free chain group, {O|w^0} is a

collection of A modules and Hn{C) is isomorphic to Gn for all n^O then

H{T{C')) is ring isomorphic to T*{ 23^«)-

Proof. Let 6": Gn->Hn{C) be the isomorphism. We construct C as

in Proposition 1, and ©: C—»C as in Proposition 2. Then @: T{C)

—>T{C) given by (©|C(n) = ©(g> • • • ®@ is a ring homomorphism

commuting with the boundary homomorphisms. By the Kunneth

theorem, ©*: H{C™) ~H{C'^) and hence ©*: T*{ 23Gn) ~H{T{C')).

2. The spaces X and fi: notation and preliminary remarks. X is a

1-connected  topological  space  of  Lusternik-Schnirelmann  strong
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category two. That is, there are closed subsets Xu X2 and maps

Ru R2: XXI^X such that

X = Xi U Xi,

Ri(x, 0) = x (for xEX,i = Í, 2),

Ri(Xt X /) C Xi,       Ri(X X 1) = *o E Xi i\ X2.

Since X is 1-connected, it imposes no additional restriction to assume

Ri(xoXl) =xo. We shall, however, impose the restriction that

(X; Xi, Xi) is to be a proper triad. In addition let

Xo  =  Xl il A 2,

E = (X, Xo)a'l); p: E -> X is the fibre map given by p(f) = /(0),

Í2 = p-H^o),

£,• = p-i(Xi) (i = 0, 1, 2),

Pi: X< -> £< by Pi(x)(t) = «<(*, /) for xEXijEI (i= 1, 2),

p0: Xo —► 0 by p0(x)vpi(x) * p2(x) for a; E X<¡ (v is defined below).

If/, g are paths in X with/(l) =g(0) then/*g is the path

Í   f(2l), Ù a t á 1/2,

;*SU "    W-l), 1/2 = /= 1.

If / is a path in X then vf is the path given by vf(t) =/(l — t).

The homology theory used here is the cubical theory, with co-

efficients in the principal ideal ring A, described below :

An n-cube of a space X is a map u: In—*X. We say a cube is de-

generate if there is an integer i, 1 ¿igra, such that u(ti, ■ ■ ■ , í,-_i, í¿,

<i+i, • • • , ín)=«(í, • • • , ti-i, 0, í,+i, • • • , Q for 0 = ÍÍ=1. 0/„(X) is

the free A -module generated by ra-cubes; Dn(X) the subgroup of

Qn(X) generated by degenerate cubes and Cn(X) =Qn(X)/Dn(X) is

the group of cubical ra-chains of X. If li^i^n and 0:ge = l then X,iew

isthe (ra —l)-cube,X,-,eíí(íi, • • • ,tn-i)=u(tu ■ ■ ■ ,¿,_i,e,U, • • • ,tn-î).

The boundary on Cn(X) is induced by

n

du=Y, (-lHXi.r» - X.-.om).
•-i

The homology groups given by this theory are isomorphic to the

corresponding singular homology groups [l].

If «: I'—»fl and v: /"—>fl then u*v: 7p+«-^n is defined by
u*v(h, • • ■ , tp+q)=u(ti, ■ • • , tp) *v(tp+i, ■ • • , tp+q). This induces a
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pairing Cp{9,)®Ct{9,)—>Cp+t{íí), which yields the Pontrjagin product.

Proposition 4. Let F<: £¿->X\Xfi and G,: X,XO->£, (i = l, 2)

be given by

Fi{f) = {p{f),vpi{p{f)*f), fGEi,
Gi{x, f) = Pi{x) *f, x G Xi, /en.

Then (F,-, G,) are homotopy equivalences between £< and XiXQ.

Furthermore, when restricted they form homotopy equivalences between

Eo and XoX&.

Proof.

FioGi{x,f) = {x, vpi{x)*{pi{x)*f)),

GiOFi{f) = {pi{p{f))*{VPi{p{f))*f).

The homotopies of these maps to the identities are set up in the ob-

vious manner.

Consider the following diagram :

di
H„_i(fi; M) «- Hn{E, fi; M) Hn{X X fi, x0 X fi; M)

i ii* l (î4 X i)*

Hn{E, Ei; M) Hn{X X fi, Xx X fi; M)

î h*            , T (¿s Xi)*

Hn{E2, Eo; M)-► Hn{X2 X fi, Xa X fi; M)

i dî              ,, i ô3
r 2*

Hn-i{E0, fi; M)-► Hn-i{Xo X fi, *o X fi; M)

M is an ¿4-module.

di is the boundary homomorphism for the pair {E, Q). It is an

isomorphism for «>0 since E is contractible.

ii: (£, Q)G{E, Ei). Since Xi is contractible, we have H„{Ei,

ñ)=0 for «^0 and ¿i* is an isomorphism (let ri{f){t)=Ri{f{t), 1);

then ri* = i'i*-1).

i2: {E2, Eo)GiE, Ei) induces the isomorphism ¿2* by excision.

d2 is the boundary homomorphism for the triple (£2, £0, Œ)- Since

X2 is contractible we have Hn{E2, Ü) =0 for «^0 and d2 is an iso-

morphism.

P'2*, F'2* are induced by F2. Using Proposition 4 and the five Lemma,

it is easy to see that these are isomorphisms.

i: ÖCÖ.
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ic (X, x<i)C(X, Xi). Note that (ñXi)* is an isomorphism.

i3: (X2, X0)C(X, Xi); (i3Xi)* is an isomorphism by excision.

d3 is the boundary homomorphism of the triple (X2Xfi, X0Xß,

xoXfl); ds = F^ o3¡o (F^*)-1 is an isomorphism.

We now have (¿4X*)*1 o (i3Xi)* o F2* o ii* o ôf1 is an isomorphism

from H(ti; M)  onto Hn((X, x0)Xß;  M)  and y=di o (¿i*)-1 o ¿2*

o Gá* o Ô3"1   is   an   isomorphism   from   Hn((Xa,   x0)Xfl;   M)   onto

íT„(Q; M) for w>0. This is a generalization of a lemma by G. W.

Whitehead [3, p. 212].

3. The main theorem. We set C= X^0 C„(X0, x0) and suppose

that M = A. To make the arguments that follow less cumbersome we

replace the chain groups of the product spaces discussed in §2 by the

tensor products of the chain groups of these spaces. The symbols

formerly used to designate continuous functions should now be read

as the corresponding chain maps.

Lemma 5. Let rj: C<g>C(S2)—>C(ß) be given by r¡(u®v) =p0u*v. Then

rj induces the isomorphism y.

Proof. Let m be a p-cube of (X0, x0) and v a ç-cube of ß. We define

*i: Cp(Xa, xo)®Cq(Q)-*Cp+i(X2, X0)®Cq(ti) as follows. Let

u'(h, • • ■ , Vt-i) = -Ri(u(t2, • ■ ■ , tp+i), h)EQp+i(Xi, Xo). Then $1
is given by $i(u®v) =u'®v. Note that d$i(u®v) =u®v— Qxd(u®v)

modulo degenerate cubes and so $1 induces dg1. Thus (öi o ri o ii

0G10 f»i)* =y. Next,

d(ri o ii oG2o $i(w <g> v)) = ri o i% oG2(d$i(u ® v))

= rio i2oG2(u ® v) — rio i2oG2$id)(u ® v)

= ri(p2u *v) — ri o i2 o G2 o $id(u ® »)

which is a chain in Cp+t(E). Let $2: Cn-i(E)—>Cn(E) be given by

*iw(*. • • • , Q(t) = Ri(w(t2, • • • , tn)(hi(ti, I)), h2(h, t))

when w: /n_1—>E and hi, Jh: I2^>I are maps such that

/ for s = 0,    0 ^ / á 1,

Äx(i, í) -       0 5=1,     0|íg 1/2,

2í- 1 í=l,l/2á<l 1,

1 f-0,    0£ *£ 1,

A(s, 0 = 11 - 21 í-1,    OáJá 1/2,

0 s - 1,1/2 á * á 1.
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Thus we have d$2w-\-$2dw={vpipw) *w — riW. In particular, setting

w=p2u*v, n = p-\-q-\-i we have

(â$2 + $2d){p2u*v) = {vpiu) * {p2u * v) — ri{p2u*v).

Finally there is a homotopy of fl into itself sending {vpi{x)) * {p3{x) *f)

into po{x) *f when x£X0, /£fi. Combining these homotopies yields:

there is a homomorphism

$: CP(X„, *o) ® C,(fi) -* Cp+5+1(fi)

such that

(ö$ + $d)(M ® !)) = (d o ri o î2 o G2 o $i)(m ® ») — (p0«) * P.

Hence the homomorphism ¿j induces y.

Let r]n: Cin)—>C(fl) be defined by 770(a) =aco0 (where w0 is a basic

0-cocycle of fl and aGA = C(-0)),r)n{ci® • • • <8>cB)=PoCi* • ■ • *poC„

for w>0. Extend {??„} to»;: T{C)—>C(fl) ; this is a ring homomorphism

commuting with  the boundary operators and hence induces 77*:

r*(H(Xo,*o))-^ff(Q).

Proposition 6. »7* is a« isomorphism.

Proof. Note that F(C) is graded by dim a = 0 if aGCm,

dim (cB1® • • • ®c„t)=»i+ • • • +«t when cniGCni{Xo, x0)

{i — 1, • • • , i), and 77 preserves this grading. The proof now goes by

induction on tjiis dimension.

Clearly 77*: H0{T{C))~H0{Q). Next suppose 77*: Hn_i{T{Q)

«#»-1(0). Since i7o(C(1))=0, it follows that Hn-i{T{Q)

= Hn-i{ 23p<n C<»>). Thus for ne 1, Hn{T{Q) ~Hn{C^® EK„ C«).
Using the induction assumption,

(1 0 7,n_i)*: hJc™ 0 EC«) « Hn{C 0 C(fi)).
\ p<n /

From Lemma 5,

ij*: Hn{C ® C{Q)) «H„(fi).

But 7jo(l<g>7/n_i) =77„ and so we have 77*: Hn{T{C)) «i/„(0).

Since Hn{X) «iîn_i(Xo, x0) for «^1 we may reword this proposi-

tion to read :

Theorem 7. If X is a 1 -connected space of Lusternik-Schnirelmann

strong category two and ñ the loop space on X then the Pontrjagin ring

i7*(fí) is isomorphic to T*{ 23«*-2 Hn{X)).
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In case G is torsion free, the torsion products in T*{G) vanish so

that T*{G) = T{G). Thus if H*{X) is torsion free we have H*{Q)

~T{H*{X, xo)). This result was known to Bott and Samelson [l].
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