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Introduction. The subject matter of this paper belongs to the

general theory of sets. The objectives here are the examinations of the

structure of classes of sets which are closed under various finite and

transfinite set operations and those transformations which preserve

these operations. The major results of this paper are partial extensions

of (a) the well known theory of cr-algebras (e.g. [4]), (b) the work of

E. Marczewski [l] on isomorphisms, (c) the work of R. Sikorski [2]

on tr-homomorphisms and (d) the work of A. Tarski [3 ] on fields of

sets and set functions. Three classes of sets—the algebra, raz-algebra

and total algebra—as well as four transformations—the w-homo-

morphism, weak isomorphism, raz-isomorphism, and total isomor-

phism—are studied.

A class X of sets is an algebra if it is closed under finite set opera-

tions, i.e. addition of two sets and complementation. Analogically X

is an w-algebra if X is closed under tw-operations, i.e. complementa-

tions and addition of not more than m sets, where m is an arbitrary

fixed cardinal number. X is a total algebra if it is closed under all

operations, i.e. complementation and arbitrary addition.

Two classes of sets, X and £, are weakly isomorphic if X and £

considered as partially ordered by the relation of proper inclusion are

similar. X and £ are zra-isomorphic if they have the same properties

from the point of view of »«-operations; and, finally, X and £ are

totally isomorphic if they have the same properties from the point of

view of all operations on sets.

The most important structure theorems concern the w-operations

for wz^No. The formulation of the corresponding finite and total

structure theorems follow easily from the w-theorems and will be

omitted except in special cases.

The work is divided into two parts: (1) algebras of sets and

(2) homomorphisms. In (1) the existence, composition and construc-

tion are treated; and, further, the relation between algebras and the

"natural set units" is developed. In (2) are discussed some properties

of wz-additive, complementative transformations. Homomorphisms
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are characterized in terms of the "set units"; and several sets of

equivalent conditions for homomorphisms and isomorphisms are

given.

Terminology and notation. A space is understood to be an arbitrary

nonvoid set. The letters X and F will denote arbitrary spaces. 0 will

denote the empty set of any space. 6>(X) denotes the class of all sub-

sets of X. For each set AQX, A" denotes X—A and A1 denotes A.

Each class X of subsets of X will be considered indexed, i.e. can

be represented in the form X = {Av} v(=x- If m is an arbitrary cardinal

number, a class X of subsets of X is called an m-class of subsets of X

whenever the cardinality, X, of X is such that X^m.

A class 3C= {-4»}„g3¿ of subsets of X is called (1) complementative,

(2) subtractive, (3) m-additive and (4) m-multiplicative, respectively,

when for every m-class 9TC= {Av}vç=^QX, (1) X— Avl=A°tlEX,

(2) Avl-AViEX, (3) U„Gifà AVEX and (4) n»e9TC A^x- If & is
m-additive [m-multiplicative] for all finite m, X is said to be additive

[multiplicative]; if X is m-additive [m-multiplicative] for all m, X is

said to be totally additive [totally multiplicative]. It is easily seen

that X is additive [multiplicative] if and only if X is m-additive

[m-multiplicative] for_some m^2; totally additive [totally multipli-

cative], if and only if <P(X)-additive [(p(.X')-multiplicative]. Further,

one finds that each complementative, m-additive [m-multiplicative]

class is also m-multiplicative [m-additive] for each m; and finally,

that each complementative, multiplicative class is subtractive.

A mapping * with domain X and range £ is called a transformation

of X onto £. A transformation, *, of a class X (of subsets of X) onto

a class £ (of subsets of Y) is said to be complementative if for each

A, X-A=A°EX, <¡>(X-A)=Y-cp(A), i.e. *(Ai)=[*(A)]i for
i = 0, 1. Similarly, one defines subtractivity, m-additivity and m-

multiplicativity for transformations. Finally, <f> is inclusive if for

each A, BEX such that ACB, *(A)C<p(B).

1. Algebras of sets

1.1. m-algebras. An m-algebra of subsets of X is an m-additive,

complementative class of subsets of X, an algebra is an m-algebra for

all finite m; and a total algebra is an m-algebra for all m. [The usual

c-algebra is an No-algebra in the present notation.]

Since each <5>(X)-algebra is a total algebra and each 2-algebra is an

algebra, one need consider primarily m-algebras for m ¡i No in order

to grasp the general theory.

From the definitions it follows easily that each m-algebra is m-

multiplicative, subtractive and contains 0 and X. Further, to each
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class X there is associated a unique raz-algebra in the following man-

ner.

Theorem 1. If X is any class of subsets of X, then there exists a

unique m-algebra 3m, such that XC5m and such that if SF is any other

m-algebra containing X, then SFmCï.

Proof. (P(X) is an raz-algebra and, hence, there exists at least one

m-algebra containing X. Furthermore, the intersection of an arbitrary

family of raz-algebras is again an raz-algebra.

The intersection of all wz-algebras containing X is, then, found to

be the desired raz-algebra SFm.

The raz-algebra $Fm, the least m-algebra containing X, is called the

wz-algebra generated by X; it will be denoted by £Fm(X). Similarly,

ï(X) and 3(X) will denote, respectively, the least algebra and least

total algebra containing X.

Since each raz-algebra is the least raz-algebra containing some class

of sets, the discussions of raz-algebras can be limited to discussions of

least raz-algebras without loss of generality.

Theorem 2. If X is any class of subsets of X and A is any set of

ïm(X), then there exists an m-subclass 3H of X such that A G 3^(911) ; or

equivalently ïm(X) = UgiïÇX,3Ïï=m ÎFm(3ïl).

Proof. The union of all those »z-subalgebras of £Fm(X) which are

generated by some raz-subclass of X is an raz-algebra containing X and

contained in im(X); it is therefore identical with fJm(X).

Theorem 2 above is essentially the classical composition theorem

for tr-algebras. A more thorough understanding of the composition

of raz-algebras can be obtained if one studies the "natural set units"

of raz-algebras treated in the next section.

1.2. Constituents and atoms. If X= {-¿»Kejc 'san arbitrary class

of subsets of X, then each set of the form rU£9ît A\', where iv = 0 or 1

for all v and 9TC= {^^.jreaK ls an m-subclass of X, is called an raz-

constituent of X; each raz-constituent where raz is finite is called simply

a constituent of X; and each fWejc A*," is a total constituent of X. Each

nonempty total constituent of X is called an atom of X. £(X) will

denote the class of all atoms of X.

For algebras it has been proved [l] that:

Theorem 3. If X is any class of sets, then 3(X) is the class of all

finite unions of constituents of X.

For total algebras an even stronger result is available. In fact
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Marczewski [l ] has essentially proved the following theorem.

Theorem 4. If g and X are classes of subsets of X, then 9 = S(3C),

i.e. 9 is the class of all atoms of X, if and only if (a) the union of the

elements of Qis X; (b) the elements of g are mutually disjoint; (c) 3(3C)

is the class of all unions of elements of g; and (d) each element of 3(X)

can be uniquely represented as a union of elements of g.

On the basis of the preceding two theorems one might be lead to

believe that each m-algebra can be represented as the class of all

m-unions of m-constituents. This result is unfortunately not true. The

Borel sets in the unit interval provide a classic counterexample to the

m-analog of Theorems 3 and 4.

Let X be the half open unit interval [0, 1]. For jfe = l, 2, • • • , let

At be the set of all points of X, whose dyadic expansions ({ii, i2, • • • }

where 4=0 or 1) have 1 as the &th digit. Let X= {Di, D2, • • • ,

Dn, • • • }• 5W3C) = 03, the class of Borel sets of the unit interval.

The No-constituents of X are the single points and finite unions of

some special subintervals. It is well known that i?Ko(3C) = 03 is most

definitely neither the class of all No-unions nor the class of all unions

of the intervals and points mentioned above.

The strongest known theorem concerning the relationship between

m-constituents and m-algebras is the following weak result.

Theorem 5. If X is any class of sets, then 5m(X) contains the class,

9TCm, of all m-unions of m-constituents of X, and 3m(X) is contained in

the class 3m of all unions of m-constituents of X ; but there exists at least

one class of sets Xi and one infinite cardinal mi such that !Mm1?a5m1(Xi)

9^ omi.

1.3. Construction of m-algebras. Although a complete character-

ization of m-algebras in terms of m-constituents is not known, it is

possible to formulate a transfinite construction process for least m-

algebras. One such construction is described below.

Let X be an arbitrary class of subsets of X. Since lSm(X)

= 3rm(3CU{X}), one may assume without loss of generality that

XEX. For each class £> of subsets of X, let (SD)m be defined to be the

class of all m-unions of differences of elements of 3D. Let 3Co = X and

Xß = (Ua<ß Xa)m for each ordinal ß. Now XoQSm(X). Further, if

XßC5m(X) for all ß<y, then \Jß<y XßC5m(X) and 3Zy = (\Jß<1 Xß)m
C.5m(X). The use of the principle of transfinite induction is, then,

sufficient to establish the fact that XaE5m(X) for all ordinals a.

If Í2(m) is the first ordinal such that Q,(m) >m and iFm = Ua<n(m) Xa,

the preceding paragraphs guarantee that XC.5mC.5m(X).
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Further, if A, SG^m, there exist ordinals a, ß and y such that

AÇ.X*, 5GXß and a, ß<y<Q(m). Consequently, A— 5GX7C3rm.

In particular X—B G ïm for all BÇHïïm. íFm is, therefore, complementa-

tive.

If now 9TC = {Bv} t,£=g¡í is an arbitrary raz-subclass of ffm, there exists

for each vG9TCan ordinal a(v) such that5„GXa(«). If cr = St-eári^Mi

í=2"eáíl ä(v)i=m-m=m; a>a(v) for all »G9TC and tr<fi(raz).

Hence U„ggf¿ -BiGXaC^m and iFm is raz-additive.

These considerations establish the following theorem.

Theorem 6. If Xo = X is a class of subsets of X which contains X;

(£>)m is the class of all m-unions of differences of sets of £ for each

£Q(P(X); ß(raz) is the first ordinal such that Q(m)>m; and Xß

= 0Ja<ß Xa)mfor all ß, then

3m(X) = U  Xa.

An immediate corollary to the construction theorem is the hier-

archy theorem below.

Theorem 7. If X is any class of subsets of X and m and n are two

infinite cardinals such that n<m, then

X C ï(X) C ^niX) C MX) C 3(X) C (P(X),

where the first, second, third, fourth and fifth inclusions are, respectively,

proper if and only if (1) X *i not an algebra; (2) X^Ko; (3) X>ra,

(4) X>raz; and (5) at least one atom of X contains more than one point

ofX.
2. Transformations

2.1. Homomorphisms. Since an raz-algebra is an raz-additive, com-

plementative class of sets, it is not unreasonable to expect that an

raz-additive, complementative transformation will preserve the alge-

braic properties of an raz-algebra. This result is in fact true.

Theorem 8. If 4>is an m-additive, complementative transformation of

an m-algebra 9ÏÏ of subsets of X onto a class £ of subsets of Y, then £

is an m-algebra. If, further, XC9TC, then c/»(3:m(X)) =5:m(0(X)).

Proof. To prove the theorem it is sufficient to prove the latter con-

clusion. To establish this result it is sufficient to prove that 4>(Xß)

= (<f>(X))ß for all 0<fi(raz). The proof is by transfinite induction.

(a) <¿>(Xo)=^>(X) = (c6(X))o.

(b) Assume that <p(Xa) = (<A(X))« for all a <ß.

(c) Since 4> is raz-additive and complementative on raz-algebra 31Í.
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it is also m-multiplicative and subtractive on 9TÏ. These properties and

assumption (b) guarantee that

<b(xß) = <M (  U xa) ) = (<b( U xaj)   = (   U <b(xa))
\\ a<ß /ml \     \ a<ß //m \ a<ß /m

= (   U   (<b(X))a)    = (<b(X))ß

for all ß and in particular for all /3<ß(m). The theorem, then, is

proved.

From the above theorem one is led in a natural manner to the

following definition of an m-homomorphism.

A transformation 0 of a class X of subsets of X onto a class £ of

subsets of Y is called an m-homomorphism of X onto <£, if there exists

an extension **, of <p, which is an m-additive, complementative

transformation of iFm(3C) onto 5m(£). Homomorphisms and total

homomorphisms are defined analogously.

The elementary properties of m-homomorphisms are the usual

ones. It is readily established that the extension </>*, of an m-homo-

morphism <f>, is m-multiplicative, subtractive and inclusive; and, fur-

ther, that **(X) = F and **(0) = 0.
The most important property of an m-homomorphism <f> concerns

the behavior of the m-constituents and their images under <p. If 0 is a

transformation of X onto £, and f"Ue3ïï A'," is an m-constituent of X,

then rUegrc [0(-4i>)]'° is the corresponding m-constituent of £ under 0.

In terms of these entities the m-homomorphism can be characterized

as follows.

Theorem 9. A transformation <j> of X onto £ is an m-homomorphism

of X onto £ if and only if (dm) : whenever an m-constituent of X is

empty so is its corresponding m-constituent.

Proof (Necessity). If * is an m-homomorphism and 0* is its

m-additive, complementative extension, then (p*(0)=0. Further,

each m-constituent of X is an element of 5m(X). Hence (5m) holds.

(Sufficiency) . Suppose condition (8m) holds, i.e. if Ç\V^^A\V = 0,

then U„£3y¿ [<p(Av)]t' = 0 for all m-subclasses, 3TC= {Av}vc=^l, of X.

Let A be an arbitrary element of 3m(X). Then there exists (Theorem

2) an m-subclass, 31= {Av}vczyl, of X such that ;4£5^(31)0(31).

But each set expressible in the form flt-egi A* is a total constituent

of 31 (as well as an m-constituent of X). Therefore, A can be repre-

sented (Theorem 4) uniquely, up to empty total constituents, as a
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sum of total constituents of 31. Define

4WÍA) =    jj     ( ru[*(¿.)]*,y
n„E3i<"c¿ V »esa /

Since ihm) and unique representation hold, 4>yi is well defined for all

elements of 3(31) and, in particular, the elements of SFm(3l).

Now let Sffl= {-4i>}»egri De an arbitrary »z-subclass of X such that

31 is a subclass of 3TC. It is seen that 5^(311) D5m(3l); in fact, each

atom of 31 is uniquely representable as a sum of atoms of 3ÏÏ (Theo-

rem 4). Define 03nC<4) in the manner of the preceding paragraph. It

is found, then, that since Fis the union of all of the total constituents

of 0(311-31) (Theorem 4),

*9l04) = U ,      ( ru ^A.)A

"L  ^i    ( rufou.)]*•))„
\nvGyiA'v'CA\vGm. //n

•(       u .    (   n ^ [4>íav)y))

"«      J>* L      ~U~   • (     ClA<t>(A,)Y)n
nvE%K'^ Ln»G3it-3l<'Cx \ .631 /fl

•(     ß „ [*iA.)]<-)]
\vGM-yi /A

=    JJ.    ( rufoGi.)]*) = ihtiiA).
n.eárc^c:^ V »earn /

Therefore, for any raz-subclass (B of X such that iGíFm((B), <Í>3í(^1)

=03ju(b(-4) =0(b(-^)- [31^® is an raz-subclass of X containing both

31 and (B. ]

Define now for each ^4Gïm(X), 4>*iA) =4>y¡iiA), where 3K is an

arbitrary raz-subclass of X such that A£5mi$tl). 4>* is well defined.

{A} is an raz-subclass of X such that A£5mi{A}). Therefore,

4>*iA) =<j){A)iA) =4>iA) for all .4GX. Hence <j>* is an extension of <j>.

It will be sufficient to prove the complementativity and »z-additiv-

ity of <p*, in order to complete the proof of the theorem.

(a) For any m-subclass, % of X, ö'ü.iX) is the union of all total con-

stituents of 4>icü.)C£. Hence c/>*(X) =4*u,(X) = Y.

(b) For arbitrary 4Gí»i(3C), it is already known that there exists

an raz-subclass, TJ = {^4„}„g^j, of X such that A^Sm(V). Then, since
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representation in 3(11) is unique up to empty total constituents of 13,

0*04°) = <b*(X - A) = U. (   fU[0(A)]A

= U  .      (   U^[*(A,)]<)

u .    ( ru[*(A,)]*)
n»GU^c^ V «eu /

= <t>*(X) - 0*04) = F - <p*(A) = [0*(¿)]°

and 0* is complementative on JC.

(c) Let ÖS= {5S}S£¿ be an m-subclass of elements of 5m(X). For

each s£(B, there exists an m-subclass, 3TC, = {Av} v(=^, of X such that

BGMam:.). .    ,
3H =   U„3Tlf =  UJ ^,1     ~c£5   = 311

is also an m-subclass of X. Therefore,

V.eœ    /

= 0^ uA5.)-    y / rufou.)]'-)

- u f     u.    ( rufou.) ]*■)) = u^0*(s.).

0* is, then, m-additive and the theorem is proved.

Similar theorems hold for homomorphisms and total homomor-

phisms. The other special homomorphisms of interest are the iso-

morphisms. These are treated in the next section.

2.2. Isomorphisms. A 1-1 transformation 0 of X onto £ is said to

be an m-isomorphism of JC onto £ if there exists an extension 0*, of 0,

which is a 1-1, m-additive, complementative transformation of

Orm(X) onto ÍFm(£). Isomorphisms and total isomorphisms are analo-

gously defined. A transformation 0 of X onto £ is said to be a weak iso-

morphism of X onto £ if 0 is 1-1 and both 0 and 0_1, the inverse of 0,

are inclusive.

From the definitions it is readily seen that an m-isomorphism is

simply a "two-way" m-homomorphism and has the corresponding

properties. What cannot be readily seen is that a weak isomorphism,

when its domain and range are m-algebras, is an m-isomorphism, i.e.
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the preservation of order (by inclusion) is sufficient to establish

raz-additivity, complementativity, etc. These results are summarized

in Theorem 10.

Theorem 10. The following four conditions are equivalent:

(1) 4> is an m-isomorphism of X onto £;

(2) <¡> satisfies (r¡m): corresponding m-constituents under 0 are

simultaneously empty or not;

(3) 0 can be extended to a weak isomorphism of 5m(X) onto 3m(£) ;

and

(4) 0 is an m-homomorphism of X onto £ and 0_1 is an m-homo-

morphism of £ onto X.

Proof. The facts that (1) implies (3) and that (1), (2) and (4) are

equivalent follow immediately from Theorem 9 and the definitions.

To complete the proof it will be sufficient to prove that the extension

4>*, of 4>, which is a weak isomorphism of 5m(X) onto îm(£), is raz-addi-

tive and complementative. [To simplify notation 0 will be sub-

stituted for 4>* in the following proof.]

If 311= {.4,..}!,£<jñ:isanyraz-subclassof3f:m(X), then since 0 is inclusive,

<PÍAv)C<PÍVve$Íl Av) for all »Gffl: and U„e3TC 0(.4„)C0(U,e3Tï Av).
But 0_1 is also inclusive and, therefore,

4>-\è(   IL aX\ D rT U^ *U,)1 D   IL <p-l[<l>iAv)],
L   \„G3Tl     /J L,G3rí J       tG3TC

.G3IÏ L.G3ÎI J       .G3IÍ

4>( U^ Av) D IL 4iA.) D4>( U^ Av).
\»G3il     /      .G3ÎÏ \»G3Tl      /

So 4>iUv£$¡z Av) = ILgçjfj. 4>iAv) and 4> is raz-additive.
Since 0 and 0-1 are both inclusive, 4>iX)Z)4>iA) for all AG.$miX)

and </>-!(Y)D4>(5) for all -BGiFm(.ß). But 0(íFm(X)) =3:m(£) and
0-1(3:m(£))=a:m(X). Consequently, <j>iX)DY, 0-1(F)DX, and 4>iA)

= Y if and only if A =X. Further, 4>iA) = 0 if and only if A = 0.
If 5 is any element of 3:m(X), then F=0(X) =4>iB°\JB) =0(5°)

U0(5). If 0(5°)n0(5) = 0, then 0(5°) = F-0CB) = [0(5) ]° and 0
would be complementative. If C is such that 0(C) =0(5°)n0(S),

then 0(C)C0(5°), 0(5) and CC-B0, 5. Therefore C = 0, 0(C) = 0
and 0 is complementative. The theorem is proved.

The theorem for total isomorphisms analogous to Theorem 10 can

be obtained from Theorem 10 by putting raz = (P(X). However, Theo-
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rem 5 enables one to establish an added equivalent condition for total

isomorphisms.

Theorem 11. The following five conditions are equivalent :

(1) 0 is a total isomorphism of X onto £; (2) 0 and 0_1 are both

total homomorphisms; (3) 0 can be extended to a weak isomorphism of

3(3C) onto 3(£); (4) 0 satisfies condition (i)t): Corresponding total con-

stituents are simultaneously void or not; and (5) 0 induces and is in-

duced by a 1-1 transformation of g(3C) onto g(£).
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