
ON A PROPERTY OF MONOTONE AND CONVEX
FUNCTIONS

G. SZEKERES

We shall deal with real functions which have continuous second

derivatives in some open interval (a, b), — » ^a<b^ ». The inter-

val of definition oif(x) is denoted by 1(f). <t>(x) is called convex (from

below) if <p"(x) ^0, concave if <j>"(x)^0 in I(<p).

If <p(x) is monotone increasing and convex, and ^i(x) is monotone

increasing and concave such that the range of <p(x) is contained in

I(fc), then

(1) /(*)   =  *!(*(*))

is also monotone increasing, but usually neither convex nor concave.

The question arises, under what conditions can f(x) be represented

in the form (1).

Theorem 1. If f(x) is strictly monotone increasing and has a con-

tinuous second derivative in 1(f) then it has a representation (1).

Theorem 1 states that there is a strictly increasing concave func-

tion \p(u) with continuous second derivative such that ^i(m) =f(^(u))

is concave. This is equivalent to

(2) W («) = /"(*(«)) l>'(«) ]2 + /'(*(«))*"(«) ̂  0,

or if <j>(x) is the inverse of ^(u), to

(3) f"(x)/f'(x) g <¡>"(x)/<p'(x).

Let/;'(*) denote/"(x) if/"(*)¡fc0 and 0 if /"(*) <0. Consider the
function

(4) 4>9(x) =   I    e"^dy
J d

where d is any fixed number in (a, b) and

(5) p(y) =  fV[f+(t)/f'(t)]dt.

Clearly <p0' (x) > 0 and
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(6) <t>ö(x)/<p'0(x) = /;'(*)//(*) ^ f"(x)/f'(x)

so that (3) is satisfied, also

(7) *„"(*) èo.

This proves the theorem.1

If f(x) is bounded and 1(f) is finite, the question comes up whether

<p(x) itself can be chosen to be bounded. This is answered by

Theorem 2. If f(x) is bounded, strictly increasing and has a con-

tinuous second derivative in (a, b), then it can be represented in the form

(1) with bounded <p(x) if and only if the integral

(8) j   ep^dy

converges, where a<d<b and p(y) is the function defined under (5).

We shall see presently that boundedness of f(x) does not necessar-

ily imply finiteness of (8).

To prove Theorem 2 we first note that, by (4), <p0(x) is bounded

from above if (8) is finite, and also bounded from below if f(x) is

bounded since

Ux) ^/X{exP JV(0//'(fl ]<&}<*?

= U(x) - f(d)]/f'(d)

by (4) and (5).
Suppose now that (8) diverges, so that <po(x) is unbounded from

above, and let </>i(x) be any function which has the properties (3) and

(7). By taking a suitable linear combination <p(x) =Ci<d>i(x)+d we can

achieve that <p(d) =0, <p'(d) =1. Now from (3) and (6),

- log *'(*) ^ /"(*)//(*) ^ - log <p¿ (x)
dx dx

which implies

<t>'(x) ̂~4>ó(x),       <p(x) ̂  d>o(x)        for x > d.

This shows that <p0(x) is in a sense the "least convex" among all pos-

sible solutions and that 4>(x), hence also <pi(x), is unbounded.

1 I am indebted to G. Lorentz for a substantial shortening of the original argument.

His proof, which is reproduced above, contributed greatly to a simplified treatment of

another part of the paper.
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Theorems 1 and 2 have obvious dual formulations.

Theorem 1. * Under the same conditions as in Theorem 1, f(x) can

be represented in the form

(i*) /(*) = fcW*))

where <j>\ is convex and \p concave.

Theorem 2*. If f(x) is as in Theorem 2, then it can be represented

in the form (1*) with bounded \p(x) if and only if

(8*) |    e«<»> dy

is finite, where

(5*) ?(?)=  (d[f-(t)/f'(0}dt.
J V

Heref'l(t) denotes -f"(t) iff"(t) £0 and 0 iff"(t) >0.

The following example shows that boundedness of f(x) does not

necessarily imply finiteness of (8) or (8*). Take/(x) =2x+x2 sin (1/x)

over the interval (0, 1). It is easily seen that/"(x) has a zero x„ be-

tween 2/(2« + 1)t and 2/(2«-l)ir, and

„,   .   (>0     for X2m < X < X2m-1,

f \x) \
\<0   for    x2m+i < x < x2m,       m = Í, 2, ■ ■ • .

It can also be shown easily that

xn = l/nir + 2/nV + 0(»-5),

f'(Xn)   =   2-(-l)"+0(W-2),

so that

and

/,

*2m

[f"(l)/f'(t)]dl = -log 3 +0(m~2)

q(y) = m log 3 + 0(1)    for    x2m+i < x < x2m_i.

This shows that /o1 eq(v)dy is divergent.
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