
SOME PROPERTIES OF THE FEJÉR POLYNOMIALS

FRITZ HERZOG AND GEORGE PIRANIAN1

1. Introduction. The polynomials

1           z z"-1       z"      zn+1
Pn(z) =— +-; + ■ • • +

»      « — 1 112 n

were introduced, by way of their real and imaginary parts on the

unit circle C, by Fejér [6; 7]. Fejér showed that the number 24-7T

is an upper bound for the modulus both of the real and of the imagi-

nary part of PB on C (w = l, 2, • • • ); a very simple proof that the

polynomials Pn are uniformly bounded on C is given in [3, p. 43]. In

view of recent applications of the Fejér polynomials in the study of

Taylor series (see, for example, [3; 4; 8]), we have undertaken an

investigation of their least upper bound on C (see §3) and of the dis-

tribution of their zeros (see §2).

Elementary considerations show that limn<0O nPn(z) =1/(1 —z) for

\z\ <1, and that the convergence is uniform in every disc \z\ gr<l.

From this and the fact that the reciprocal of every zero of P„ is also

a zero of P„, it follows that the zeros of P„ lie on or near the circle

C. The theorem of Jentzsch and Szegö [9; 11] implies further that

the arguments of the zeros are uniformly distributed in the interval

[0, 27t]. Somewhat stronger results on the distribution of the argu-

ments could be obtained by applying a theorem of Erdös and Turan

[5, p. 106]; but by using a method which involves nothing deeper

than Rouché's theorem, we prove that each of the « — 1 sectors

(2k - l)r (2k + 1)tt
z = rei9,      -■ < 6 < --       (* = 1, 2, •••,«- 1)

» n

contains precisely two zeros of P„.

2. The zeros of the Fejér polynomials. We shall state and prove

various lemmas concerning the zeros of the polynomials P„. At the

end of the section, the contents of the lemmas will be gathered into a

theorem.
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Lemma 1. The point z = 1 is the only positive zero of Pn. The recipro-

cal and the complex conjugate of every zero of P„ are also zeros of Pn.

This lemma follows at once from Descartes' rule of signs, from the

fact that the coefficients of the polynomial P„ are real, and from the

relation Pn(z~1) = -z-2n+1P„(z).

Lemma 2. Except for 8=1, P„ has no zeros on the unit circle.

It is easily verified that

(1) Pn(eie) = - 2iei^-1^»C(n, 6),

where

ri   m      V sin {k - i/2)e
C(n, 0) = 2^ ~

t-i k

Using the identity in [10, § VI, Problem 17, p. 78] and Abel's sum-

mation, we obtain the formula

1       isin2(n0/2)       -1 sin2 (¿0/2»
C(n, 0) =-<-h  y. -} •

sin (0/2) l       n m   k(k + 1) /

The lemma follows from the fact that the right member is positive

for O<0<2ir.

In the sequel, it will be useful to deal with the function

Z" + Z~n ÎZ.1 zh + z~h

(2) Wn(Z)   =  Z-(l   - z)Pn(z)-2 +   £ ——— •
n k=i k(k + 1)

Lemma 3. Each of the n sectors

(2k - l)ir/w < argz < (2k + l)ir/n (k = 0, 1, • • • , n -1)

contains exactly two zeros of Wn(z).

Let

zn + g-" çi1 z* + sr*
Uz) =-2,    gn(z) = £

n 4=1 ¿(¿ + 1)

If z lies on one of the rays

(2k + \)ir
(3) arg z =-    (k = 0, 1, • • • , « - 1),

then,  with   |z| =r,   |/„(z)| =(rn+r-n)/« + 2,  and  therefore   |/n(z)|

-|gn(z)| ^(r), where
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*n _1_ f—n n—1    »fc _L_ *.— k

*M =-+ 2 - 2 ——- •
n t_i ¿(£ + 1)

To show that ^(r)>0 for r>0, it is sufficient to consider the values

r^ 1. Now ^(1) =4/«>0; and ip'(r) ^0 when ral» since the function

n-l

r$'(r) = r" - r-" - 2
¡b_l        K +  1

vanishes at r = 1 while its derivative

n-l   i

k=l

I •=} *(r* + r-»)\

I. k=\ k +   \        )

is obviously positive. It follows that

(4) \fn(z)\    >    \gn(z)\

on each of the rays (3). The inequality (4) is also satisfied on the circle

\z\ =r„, provided r„ is sufficiently small or sufficiently large. By ap-

plying Rouché's theorem to the functions/« and fn+gn—Wn, with

reference to a region which is bounded by two neighboring rays (3)

and by arcs of two circles \z\ =r„ and \z\ =r~1, we conclude that/„

and I^n have the same number of zeros in this region. The lemma

now follows from the fact that the zeros of /„ are the 2« numbers

[n ± (n2 - l)i/2]i/V*"'B (Ä - 0, 1, •••,*- 1).

Lemma 4. P„ has two or no negative zeros, depending on whether n

is even or odd.

The function Wn has 2« zeros of which two lie at z = 1. If « is odd,

Lemma 3 disposes of the remaining 2n — 2 zeros. If n is even, Lemma

3 implies that at most two zeros are negative, and Lemmas 1 and 2

imply that at least two zeros are negative.

Lemma 5. If e > 0 a«¿ « is sufficiently large, the zeros of Pn lie in the

annulus exp [ — (4+e)»-1 log «] < \z\ <exp [(4+e)«-1 log «].

It suffices to show that Wn(z) ?*0 for | z\ ^exp [ —(4+e)«-1 log »]

and wè«o(e). By (2), znW„(z) = \/n+ Vn(z), where

zn-l

Vn(z) =-1-h • • • H-2z"
»(»-1)      (m-1)(m-2) 2-1

(5)
zn+1 ~n+2 «.2n-l

1-2        2-3 (n — \)n       n
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We shall now show that | Vn(z)\ <l/n for the values of z indicated

above.

Let 7? = 2+e/2. The sum of the moduli of the first [n/r¡\ terms on

the right-hand side of (5) is less than

11111
— <

« — [n/r¡]      n      n — n/t\      n      n(-n — 1)

Since the remaining terms have coefficients of modulus at most 2,

the modulus of their sum is at most

2|z|"/' 2ra-2 l + o(l)

1 — I z |      1 — exp [—2r¡n~1 log n]     tin log n

It follows that, for large n,

i 1 /     1    \       1
\Vn(z)\    a---+0(--)<->

n(r¡ — 1) \n log nj      n

and the lemma is proved.

Lemma 6. If n is even, the two negative zeros of P„ are given asymp-

totically by the formula

z = — [n log 16 + o(n)]±1'n.

To prove this lemma, we suppose that Wn(~r„)=0, with r„>l,

and we write rn = nPnln = exp (pnn~l log «). (For the sake of typo-

graphical simplicity, we drop the subscript n in the remainder of the

proof.)

By Lemma 5, p<5 when n is sufficiently large. From equation (2)

we obtain the relation

(6) »p-1 + »-P-1 = h(r),

where

r + r-1     r2 + T2     r» + r~* r""1 + rl~n

(7) h(r) = 2 + —-—-+ -f--+
1-2 2-3 3-4 (n-l)n

The proof of the lemma hinges on an effective computation of h(r).

For the purpose of this computation, we divide the right-hand mem-

ber of (7) into two sections. The first section contains the number 2

and the first [3n/(p log n) ] terms that follow. The &th of these terms

has the modulus 2/k(k+l)+ek, where

2 cosh (kpn~x log ») — 2
et =-•

k(k + 1)



1956] SOME PROPERTIES OF THE FEJÉR POLYNOMIALS 383

Since cosh u<l+2u2 when 0<wiS3,

Mkpn~x log n)2
0 < £* < -^TTT^- < 4^w_1 l0S w)2'

k(k + 1)

and

2.,        e* <-4(/>«~1 log n)2 = 12/w-1 log n = o(l).
*á3n/Cí> logn) ^ log w

It follows that the sum of the terms in the first section on the right of

(7) is log 16+o(l).

To show that the sum of the terms in the second section is small, we

shall first prove that each term is numerically larger than its predeces-

sor. It will then follow that the sum of the terms in the second section

is positive and smaller than the last term. We write

rk+i + f-k-i       ktk + 1)

rk + r-k      (¿ + 1)(¿ + 2)

cosh [(k + l)pn~x log n] \ 2       4

cosh (kpn~l log n)
!r,_l+±-...l.
L k       k2 J

The second factor on the right is greater than 1 —2/k, that is, greater

than 1 — (2/3)pn~l log n. To obtain a lower bound on the first factor,

we use the fact that the derivative of cosh x is an increasing function,

and we conclude that the factor is greater than

cosh (kpn~x log n) + pn~l log n sinh (kpn~l log n)

cosh (kpn~x log n)

= 1 + (pn~l log n) tanh (kpn~x log «) > 1 + (tanh 3)pn~x log n.

Since tanh 3>2/3, the ratio between the numerical value of the

(fe+l)st term and that of the kth term on the right of (7) is greater

than 1 when k>3n/(p log n), if n is sufficiently large. Since the last

term in (7) is less than (np+l)/(n — l)n<3np~i, it follows that

(8) log 16 + o(l) ^ h(r) ^ log 16 + 3n*~2 + o(l).

We conclude from equation (6) and the first inequality in (8) that

p>l; and from (6) and the second inequality in (8) that p—»1 as

n—»°o. It follows, again from (8), that &(r)=log 16+o(l). From (6)

we now deduce that r" = np = n[h(r) —n~r~1], that is,

r= {«[logló + oa)]}1'»,

as was to be proved.
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Lemma 7. If e>0 and « is sufficiently large, the annulus

(2e)1'2 - €       .   . (2e)1'2 - e

1 - —--ú  \z\   Ú 1 H-
n n

contains no zeros of Pn(z)/(1 —z).

We write P„(z)/(l—z)=a0-r-aiZ-|-a2Z2-r- • • • +a2„_2Z2n_2, where

1 1 1
a„-k = an+k-2 =-h ■- + •••+ —        (k = 1, 2, • • • , n).

n       n — 1 ä

We now apply a theorem of Egerváry  [2, p. 81 ] which, slightly

specialized for our purpose, reads as follows:

If am>0 (0^m^2n — 2) and if, for some p>\ and for m = 0,
1, • • • , « —2, «, » + 1, • • ■ , 2w —2, the condition

(9) am-\ - (p + p~~l)am + am+1 > 0

(with the  notation  a_i=a2n-i = 0)  is  satisfied,  then the polynomial

^2mamzm has no zeros in the annulus p_1¿ \z\ ^p.

To establish a value of p for which our polynomial satisfies the

condition (9), we write p — i+b. Applied to the case m=n—k, condi-

tion (9) becomes, after some elementary computations,

b2 1
(10) —— <

1 + 6      k(k-l) [l/n + \/(n - 1) + • • • + l/k]

(k = 2, 3, • • • , n).

In order to find an upper bound for the denominator on the right side

of (10), we note that this denominator has the value

k(k — 1) j-1-- + • ■ ■ +-1 + k - 1 < k2 log (n/k) + n.
\_n      n — \ «+1J

The maximum of this, for k}t 1, is «+«2/2e. It follows that condition

(10) is satisfied provided ¿>2<l/(«+«2/2e); that is, condition (9) is

satisfied, for large w, if b = ((2e)ll2—e)/n.

The following proposition summarizes the results of this section:

Theorem 1. The polynomial P„ has a zero at z = l, and it has no

other positive zero and no other zero on the unit circle. It has no negative

zeros if « is odd; if « is even, it has two negative zeros which are given

asymptotically by the formula

z = - 1 ±
(log n     log loc 16\        / 1 \

-+ —-) + "(-)•

n               n      / \n/
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Each of the n — 1 sectors (2k —\)ic/n<arg z<(2k+l)ir/n (k = l, 2,

• • • , n — 1) contains exactly two zeros of P„. For e > 0 and n sufficiently

large, each of the zeros of P„(z)/(1 — z) lies in one of the annuli

(4 + e)logw (2e)1'2-€
1-<  \z\   < 1-)

n n

í4 + e)locw       .    , (2e)1'2-e
1 +->  |z|   > 1+-

n n

3. The maximum modulus of the Fejér polynomials. We denote by

Mn the maximum modulus of Pn on the unit circle C.

Theorem 2. As «—>«>,

C T sin /
Mn -> 2 I     -dt = 3.704 • • • .

Jo t

From (1) we note that

"   sin a - 1/2)0
Mn = 2 max    ¿_, -•

O = 0=ir    k=l k

The sum on the right is a partial sum of the Fourier series of the func-

tion

»   sin (k - 1/2)0
g(ß) = Is ■->

k.1 k

which satisfies the relations g(6+4ir)=g(d), g(—d)=—g(6) and

g(27T-0) =g(0). We write

=   -   2 sin (k - 1/2)0 _   -    sin (k - 1/2)0

g ¿t 2k - 1 ¿Í      k(2k - 1)

and we observe that the first sum on the right is the well-known

Fourier series of the function which takes the values ?r/2 and —ir/2

in alternate intervals of length 2ir, while the second series on the right

converges uniformly for all real 0. Our result now follows from the

theory of the Gibbs phenomenon. For a concise statement, we refer

the reader to Zygmund [12, §§8.5, 8.51]; interesting graphs and an

excellent historical account will be found in [l, Chapter IX].

By a more detailed investigation, we have been able to show that

the constant of Theorem 2 is actually an upper bound, and hence

the least upper bound, for the maxima Mn (n = l, 2, • • ■ ). This in-
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vestigation is based on the representation C(«, 0) =A(n, 0) cos (6/2)

-B(n, 0) sin (0/2), where

"   sin kd "   cos kd
A(n, 6) = E ——'        B(n< ö) = S —r- ■

k=l k k-1 k

The principal properties of these trigonometric polynomials are

treated in [10, §VI, Problems 23-28]. The computations involved are

so tedious that their publication is not justified.
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