SOME PROPERTIES OF THE FEJER POLYNOMIALS
FRITZ HERZOG AND GEORGE PIRANIAN!

1. Introduction. The polynomials
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were introduced, by way of their real and imaginary parts on the
unit circle C, by Fejér [6; 7]. Fejér showed that the number 24
is an upper bound for the modulus both of the real and of the imagi-
nary part of P, on C (n=1, 2, - - - ); a very simple proof that the
polynomials P, are uniformly bounded on C is given in [3, p. 43]. In
view of recent applications of the Fejér polynomials in the study of
Taylor series (see, for example, [3; 4; 8]), we have undertaken an
investigation of their least upper bound on C (see §3) and of the dis-
tribution of their zeros (see §2).

Elementary considerations show that lim,., #P.(2) =1/(1 —2) for
|2] <1, and that the convergence is uniform in every disc |z| <r <1.
From this and the fact that the reciprocal of every zero of P, is also
a zero of P,, it follows that the zeros of P, lie on or near the circle
C. The theorem of Jentzsch and Szegt [9; 11] implies further that
the arguments of the zeros are uniformly distributed in the interval
[0, 27]. Somewhat stronger results on the distribution of the argu-
ments could be obtained by applying a theorem of Erdés and Turdn
[5, p. 106]; but by using a method which involves nothing deeper
than Rouché’s theorem, we prove that each of the n—1 sectors

2k —1 2k + 1
( LN L s
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z = re', k=1,2,---,n—1)

contains precisely two zeros of P,.

2. The zeros of the Fejér polynomials. We shall state and prove
various lemmas concerning the zeros of the polynomials P,. At the
end of the section, the contents of the lemmas will be gathered into a
theorem.
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380 FRITZ HERZOG AND GEORGE PIRANIAN [June
LEMMA 1. The point z2=1 is the only positive zero of P,. The recipro-
cal and the complex conjugate of every zero of P, are also zeros of P,.

This lemma follows at once from Descartes’ rule of signs, from the
fact that the coefficients of the polynomial P, are real, and from the
relation P,(z71) = —2~2"t1P,(2).

LEMMA 2. Except for =1, P, has no zeros on the unit circle.

It is easily verified that

1) P(e%) = — 2ief—1DC(n, 6),
where
» sin (kB — 1/2)8
Cm ) = 3 S (k= 1/20
k=1 k

Using the identity in [10, § VI, Problem 17, p. 78] and Abel’s sum-
mation, we obtain the formula

1 sin? (n6/2) »! sin? (k6/2
. { / + 5 (k6/ )}.
sin (6/2) n w1 k(k+1)

The lemma follows from the fact that the right member is positive

for 0 <0< 2.
In the sequel, it will be useful to deal with the function

P + z—n n—1 zk + z—k

2+ LD

C(n,0) =

(2)  Wa(s) =27"(1 — 2)Pu(a) =

LEMMA 3. Each of the n sectors
2k — V)7/n < argz < 2k + V)7/n (k=0,1,---,n—1)

contains exactly two zeros of W,(2).

Let
on + g—n n—1 zk + z—k
faz) = ———— — 2, g.(2) = _
( " &0 = LT
If z lies on one of the rays
2k + 1
(3) arg,,:u (k=0,1,---,n—1),
n

then, with |z =7, |fa(2)| =("+r")/n+2, and therefore |f.(3)]
— | ga(3)| 2¥(r), where
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rn +f—” n—1 fk _I_ ’—k
¥() —+ kz,:l T

To show that ¥(r) >0 for >0, it is sufficient to consider the values
r=1. Now ¢(1)=4/n>0; and ¢'(r) 20 when =1, since the function
n—1 rk — r—'k
,‘b' 7) =y — 0 — _
(r) g Py
vanishes at r =1 while its derivative
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= k41
is obviously positive. It follows that
@ | 7@ | > | ga®) ]

on each of the rays (3). The inequality (4) is also satisfied on the circle
|z| =r4,, provided 7, is sufficiently small or sufficiently large. By ap-
plying Rouché’s theorem to the functions f, and f.+g.=W,, with
reference to a region which is bounded by two neighboring rays (3)
and by arcs of two circles |s| =7, and |3| =7;*, we conclude that f,
and W, have the same number of zeros in this region. The lemma
now follows from the fact that the zeros of f, are the 2n numbers

[n £ (2 — 1)12]1ing2kriln (k=0,1,---,n—1).

LEMMA 4. P, has two or no negative zeros, depending on whether n
s even or odd.

The function W, has 2z zeros of which two lie at z=1. If % is odd,
Lemma 3 disposes of the remaining 2 —2 zeros. If # is even, Lemma
3 implies that at most two zeros are negative, and Lemmas 1 and 2
imply that at least two zeros are negative.

LEMMA 5. If €>0 and n is sufficiently large, the zeros of P, lie in the
annulus exp [— (4+€)n—1log n]< | z] <exp [(4+e€)n1 log n].

It suffices to show that W,(z) =0 for |z| <exp [—(4+€)n! log 7]
and n2no(e). By (2), 2"W,(2) =1/n+ V,.(2), where

V.() _ 2 + z2 + + zn—l 2 .
S =1 (= D=2 21
® gnHl gni2 g2n—1 g2n
ey

1.2 ' 2.3 n—1Dn ' n



382 FRITZ HERZOG AND GEORGE PIRANIAN June

We shall now show that | Va(s)| <1/# for the values of 2 indicated
above.
Let n=2+¢/2. The sum of the moduli of the first [#/9] terms on
the right-hand side of (5) is less than
1 1 1 1 1

—___é___
n—1[n/1] n " n—n/n n n@-—1)

Since the remaining terms have coefficients of modulus at most 2,
the modulus of their sum is at most

2| g|n 2 _140(1)
1—|z| "1 —exp[—2umtlogn] mmlogn

It follows that, for large #,

1
ln@lg——L—+o( ! )<_,
n(n — 1) n logn n

and the lemma is proved.

LEMMA 6. If n is even, the two negative zeros of P, are given asymp-
totically by the formula

= — [nlog 16 + o(n) ]*1/.

To prove this lemma, we suppose that W,(—r,) =0, with r,>1,
and we write r,=n?"/r»=exp (p.n—! log 7). (For the sake of typo-
graphical simplicity, we drop the subscript # in the remainder of the
proof.)

By Lemma 5, p <5 when # is sufficiently large. From equation (2)
we obtain the relation

(6) n?l 4 =71 = k(r),
where

y + r—l '2 + r—? f‘ + ’f—ﬁ rn—l + rl—n
7 h(r) =2 - ——e
(1) (o) t 1-2 2.3 + 3.4 + (n—n

The proof of the lemma hinges on an effective computation of A(r).
For the purpose of this computation, we divide the right-hand mem-
ber of (7) into two sections. The first section contains the number 2
and the first [3n/(p log n) ] terms that follow. The kth of these terms
has the modulus 2/k(k+1) + €, where

_ 2cosh (kpn—tlogn) — 2
B Bk + 1)

€
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Since cosh #<1+42%«2? when 0 <u <3,

4(kpn log n)?
O0< e <—— < 4(pn11 2
€k WET D) (pn1 log n)

and
3n

E & <

ES3n/(p log n) plogn

-4(pnt log n)? = 12pn~1 log n = o(1).

It follows that the sum of the terms in the first section on the right of
(7) is log 16+0(1).

To show that the sum of the terms in the second section is small, we
shall first prove that each term is numerically larger than its predeces-
sor. It will then follow that the sum of the terms in the second section
is positive and smaller than the last term. We write

rhtl 4 b1 R(R 4 1)
Pt (4 D(k+2)

__ cosh [(E+ 1)pn—1logn] [1 2 + 4 ]
"~ cosh (kpn log n) kR )

The second factor on the right is greater than 1 —2/k, that is, greater
than 1 —(2/3)pn~1log n. To obtain a lower bound on the first factor,
we use the fact that the derivative of cosh x is an increasing function,
and we conclude that the factor is greater than

cosh (kpn—log n) + pn—'log n sinh (kpn—1log n)
cosh (kpn~1 log n)
=1+ (pntlog n) tanh (kpn—1log n) > 1 4+ (tanh 3)pn—1log n.

Since tanh 3>2/3, the ratio between the numerical value of the
(B+1)st term and that of the kth term on the right of (7) is greater
than 1 when 2> 3n/(p log ), if » is sufficiently large. Since the last
term in (7) is less than (#?+1)/(n—1)n <3n?"?, it follows that

8) log 16 4 o(1) = k(r) < log 16 + 3n72 + o(1).

We conclude from equation (6) and the first inequality in (8) that
p>1; and from (6) and the second inequality in (8) that p—1 as
n— o, It follows, again from (8), that k() =log 164 0(1). From (6)
we now deduce that r*=n?=n[h(r) —n—?"!], that is,

r = {n[log 16 + o(1)]}¥/n,

as was to be proved.
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LeEMMA 7. If €>0 and n is sufficiently large, the annulus

2¢)1/2 — 2e)12 —
Rl PRI Colial
n n

IIA

contains no zeros of P.(2)/(1—2).

We write P,(2)/(1 —2) =a¢+ a2+ a2+ - -+ +azq_222"2, where

1 1
Qn—k = Qntk—2 = — +
n n—1

1
+.._+? (k=l,2,-~',”)~

We now apply a theorem of Egerviry [2, p. 81] which, slightly
specialized for our purpose, reads as follows:

If an>0 (0=m=2n—2) and if, for some p>1 and for m=0,
1, .-, n=2,n,n+1, -, 2n—2, the condition

9) an1— (p+pNan+ a1 > 0

(with the motation a_i=az,1=0) is satisfied, then the polynomial
D_n@m3™ has no zeros in the annulus p~' < | 3| <p.

To establish a value of p for which our polynomial satisfies the
condition (9), we write p=1-4b. Applied to the case m = —k, condi-
tion (9) becomes, after some elementary computations,

b? < 1
146 k(k—D[1/n+1/(n—1)+ - +1/F]

(k=23,---,n).

In order to find an upper bound for the denominator on the right side
of (10), we note that this denominator has the value

(10)

1 1 1
RE—1)|—+—— 4+ —_— E—1< k2] k
( )[n+n—1+ +k+l:|+ og (n/k) + n.
The maximum of this, for 2=1, is n+%2/2e. It follows that condition
(10) is satisfied provided b?<1/(n-+n?/2¢); that is, condition (9) is
satisfied, for large #, if b=((2¢)V2—¢)/n.
The following proposition summarizes the results of this section:

THEOREM 1. The polynomial P, has a zero at 2=1, and it has no
other positive zero and no other zero on the unit circle. It has no negative
zeros if m is 0dd; if n is even, it has two negative zeros which are given
asymptotically by the formula

logn logloe 16 1
z=—1i( + )-I-o(——).
n n n
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Each of the n—1 sectors (2k—1)w/n<arg z<2k+1)w/n (k=1, 2,
-, n—1) contains exactly two zeros of P,. For ¢e>0 and n sufficiently
large, each of the zeros of P,(z)/(1 —3z) lies in one of the annuli

4461l 2¢)t/2 —
e R iy

(44 e loon

Qo2 — ¢
1 ———— > |5 > 14—
n

3. The maximum modulus of the Fejér polynomials. We denote by
M, the maximum modulus of P, on the unit circle C.

THEOREM 2. As n— o,
T sint
M,.—»Zf Tdt=3.704---
0

From (1) we note that

n (k—1/2)6
M, = 2 max Zu

0S0S7 k=1

The sum on the right is a partial sum of the Fourier series of the func-
tion

o= 3 sin (k — 1/26.

k=1 k

which satisfies the relations g(0+44w)=g(9), g(—0)=—g(0 and
g(2w —0) =g(0). We write

i 2sin (B — 1/2)6 B i sin (k — 1/2)6 ’

9) =
80) = 2 —,—5 = T2k —1)

and we observe that the first sum on the right is the well-known
Fourier series of the function which takes the values 7/2 and —7/2
in alternate intervals of length 2, while the second series on the right
converges uniformly for all real . Our result now follows from the
theory of the Gibbs phenomenon. For a concise statement, we refer
the reader to Zygmund [12, §§8.5, 8.51]; interesting graphs and an
excellent historical account will be found in [1, Chapter IX].

By a more detailed investigation, we have been able to show that
the constant of Theorem 2 is actually an upper bound, and hence
the least upper bound, for the maxima M, (n=1, 2, - - - ). This in-
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vestigation is based on the representation C(n, 8) =A4(n, 0) cos (8/2)
—B(n, 0) sin (0/2), where

n_ sin k6 n_ cos kO
A(n, 0) = 2 , B(n, 6) = >,
k=1 k=l k

The principal properties of these trigonometric polynomials are
treated in [10, §VI, Problems 2328 ]. The computations involved are
so tedious that their publication is not justified.
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