
SOME TAÜBERIAN PROPERTIES OF
HOLDER TRANSFORMATIONS

AMNON JAKIMOVSKI1

1. Introduction. The result which follows was proved by me, re-

cently, in [l],2 Theorem (9.2). If, for some o> — 1, the sequence

{sn}, n = 0, 1, 2, • • • , is summable A(a> to s, that is

t(" + V
n-o \    n    /

is convergent in the unit circle and

(1.1) lim (1 - *)«+1 X [ )SnX» = S     (|s|< + oo),
*Ti                   n-o\   n   /

and, for some pair ß, y of real numbers with ß<y,

(1.2) lim (hT - h?) = 0
n—»oo

then

(1.3) lim hn   = s,

when generally3 {hty} denotes the sequence of the Holder transform

of order 5 of {sn} ■

The Holder transform of order a {h1^} (or, in short, the (H, o)

transform), where a is a real number, is defined as the Hausdorff

transform generated by the sequence pn=(n + l)~", » = 0, 1, 2, • • • .

It is known that the Holder transformations are regular for a 2:0. We

say, too, that a sequence {sn} is summable Holder to s if it is sum-

mable (H, a) to s for some real number a.

In this note we obtain an extension of my above result to the case
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where  {hl%>}  is replaced by certain linear combinations of Holder

transforms as well as some other results of similar type (see §§8 and

9).
In the proof of the extensions just mentioned we use some proper-

ties of general and special Hausdorff transformations as well as two

tauberian propositions for A(a) methods of summability, formulated

below in §§2-7.

2. Some properties of the Jia-fí and J[a;        }   transformations.
\    a, bf

For any pair a, ß of real numbers, with a <ß, we call (see [l, p. 378])

the linear transform {tnaß)} of {sn},

n       Z,(<° h0)
(",ß) (a) <a,ß) ,a) nv     — Hv

t0       = ha   ;        /„      = h0    + ¿^ —--— > w>0,
„_i    (ß — a)v

the J("<® transform of {sn}- {sn} is called summable J1-"-® to 5 if

lining tn°-®=s.

The following two properties of J<-"M transforms were proved by

me in [l, Theorem (9.1) and Theorem (9.2)].

Theorem A. For any pair a, ß of real numbers, with a<ß, the

/(ot'i) transform of {sn} is a Hausdorff transform generated by {pn},

where p0 = l; pn = ((n + i)'"-(n + l)~ß)/(ß-a)n, «>0.

Theorem B. For any pair a, ß of real numbers, with a<ß, the

jia.ß) method of summability is equivalent to the (H, a-f-1) method; thus,

for — 1 ̂ a<ß, the J'-"^ transformation is regular.

A simple consequence of Theorem A and Theorem B is

Theorem 2.1. Let a, b, a, ß and y be five real numbers satisfying

a+ô = l, a<ß<y, O^a and aa+bß>0. Let {sn} be an arbitrary se-

quence. The linear transform

defined by

U0 = ho   ;       Un = ho   + ¿^ -¡—-——■- , « > 0,
,_i [a(ß - a) + b(y - a) Jo

is a Hausdorff transform of {sn} generated by the sequence {pn}, pa = 1 ;

Pn={[a(ß-a) + b(y-a) ]«}-'• [(B + l)--0(„+ l)-*-&(« + l)-r],

«>0.
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Definition. The linear Hausdorff transform

of the sequence {sn} defined in Theorem 2.1 is called the

'«I)
transform of {sn}.

The transformation

is, clearly, regular whenever ajä — 1.

3. Some properties of Mellin transforms. Given a function f(t)

of bounded variation for O^igl, then the function F(z) defined by

P(z) = SU'df(t) is called the Mellin transform of the function f(t). A

result concerning Mellin transforms, which we use later, is

Theorem C (Pitt's theorem). Let the function T(z) be a Mellin

transform of the function a(t) where a(t) is of bounded variation in

(0, 1) satisfying a(0)=a(+0) =0; a(l)=l. // | T(z)\ ^d>0 for

Re z2:0 then { T(z) }_1 is also a Mellin transform of some function ß(t)

of bounded variation in (0, 1) satisfying ß(0) =ß(+0) = 0; ß(l) = 1.

For a proof of Theorem C and a generalization of it see [3, pp. 178—

179].
The main result of this section is

Theorem 3.1. Let a, b, a and ß be real numbers satisfying a+b = l,

0<a<ß, O^a and aa+bß>0. Then the sequence {pn}, defined by po

= 1; Pn = o-[aa+bß]-1[l-(n + i)-a][i-a(n + iy-b(n + i)-»]-1,

n>0, is a regular moment sequence.

In the proof of Theorem 3.1 we use two auxiliary propositions,

Lemma 3.1 and Lemma 3.2; the first proposition

Lemma 3.1. Let a, b, a and ß be four real numbers satisfying a+b = 1,

0<a<j8, O^a and aa+bß>0. Then the function T(z) defined by
T(z) = (aa+bß)-a-l-[l-(z+l)-<']-[l-a(z+l)-"-b(z + l)-fl], is a

Mellin transform of a function y(t) of bounded variation on (0, 1) satis-

fying 7(0) =7(+0) =0; 7(1) -1.

follows simply from
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Lemma A. For 0<a, ß the function T(z) defined by

ß   l-(z + 1)--
T(z)

a   1 - (z + I)-"

((z+l)_a = e_0,'log(i,+1), where we choose for log (z+1) its principal

branch) is a Mellin transform of a function a(t), of bounded variation in

<0," 1), satisfying a(0) =a(+0) =0; a(l) = 1.

For a proof of Lemma A see [l, Lemma 9.1 ].

It is easy to prove the second auxiliary proposition

Lemma 3.2. With the suppositions of Lemma 3.1 on a, b, a, and ß

and for the function T(z) defined there, there exists a positive number g

such that for Re z^O, | T(z)\ ^g>0.

The proof of Theorem 3.1 follows immediately by combining

Lemma 3.2 with Theorem C.

4. Further properties of   J\a;   '    ) methods  of  summability.
\    a, bf

In this section we prove a property of the

method of summability which is formulated in

Theorem 4.1. For all real numbers a, b, a, ß and y satisfying

a+b = l, a<ß<y, O^a and aa+bß>0 the

K:i)
method of summability is equivalent to the (H, a + 1) method of sum-

mability.

Proof. Since both the transformations

J\
«;)

and Jia'e) are Hausdorff transformations and, by Theorem B, the

j(<*,/3) ancj (H,a+\) methods of summability are equivalent, it is

enough (by a well known theorem of Hausdorff) to show that the

following two sequences {/*„} and {XB}, where
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ß - a 1 - (n + l)-V-*>
po = 1 ; u„ =

Ao — 1; Xn =

a(ß -a)+b(y-a)  1 - a(n + 1)-»-«) - ¿(n + l)-<r-°>

» > 0,

a(ß -a)+b(y-a)  1 - a(« + !)-»-<•> - ¿(» + l)-(r-a)

ß-a 1 - (m + l)-tf-«>

m> 0,

are regular moment sequences; which is precisely the content of

Theorem 3.1 and Lemma 3.1, respectively. Q.E.D.

5. On products of summability methods. The following result on

the product of AM and regular Hausdorff methods of summability

was proved by me in [l] (the special case a = 0 of this proposition is

due to O. Szász. See [4]).

Theorem D. //, for some a> — 1, {sn} is summable Aia) to s and

{tn} is any regular Hausdorff transform of {sn} then {tn} is also sum-

mable Aw to s.

6. Two tauberian properties of the AM methods of summability.

The two tauberian theorems for AM methods of summability, formu-

lated below, are known (compare [2, Theorem 3.1 and its proof]).

Theorem E. //, for some o > — 1, {sn} is summable A (o° to s and

s„ —5„_i = 0(l/w), n—»°o, then {sn} is summable (H, —1 + e) to s for

each €>0.

Theorem F. If, for some a> — 1, {s„} is summable AM to s and

sn — sn-i = 0i,(l/n), n—>oo, then {sn} is convergent to s.

7. A tauberian theorem for Holder summability. The tauberian

theorem, for Holder summability, stated below is also interesting in

itself.

Theorem 7.1. Let {sn} be summable Holder to s. Then, given a real

number a arbitrarily a necessary and sufficient condition for {sn} to be

summable (H, a) is that for a system of 2n real numbers ai, a2, • • • , an,

oi,a2, • • • ,an satisfying a <ai< • • • <anandai+Oi+ • • • +a„ = l

holds

(7.1)       lim {hm  — [ctihn1 + a2hm   + • • • + anhj" ]} = 0.
m—»oo

An argument similar to that used in the proof of Theorem 2.1 of

my paper [l] establishes Theorem 7.1 as well as a similar result for

Cesàro summability. I do not state the last result explicitly here.
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8. Tauberian theorems for the AM methods of summability. We

can prove now the generalizations just mentioned in §1.

Theorem 8.1. Let a, b, a, ß and y be five real numbers satisfying

a+b = i, a<ß<y, O^a a«a* a(ß—a)+b(y— a)>0. Then necessary

and sufficient conditions for the (H, a) summability of {sn} are

(8.1) lim^r- [ahT + bh?]} =0
n-*°o

a«¿ that for some 5> — 1 {s„} is summable A(S).

Proof. It is easy to see that (8.1) and the A(S) summability are

necessary for the summability considered. Now we show that (8.1)

together with the A(S) summability are sufficient for the same pur-

pose. First we suppose that a^O. By Theorem D and Theorem 2.1

we have for

the

transform of {sn},

lim<l-*)«¿(* + V-<<5)*" = *-
*îi n-o\    n   /

From Theorem 2.1 and Theorem E we infer, by (8.1), that {sn} is

summable

to s. Hence, by Theorem 4.1, {sn} is summable (H, a + 1) to s; thus

Theorems 7.1 and 8.1 yield limn,«, hna) = s. Our theorem is proved in

the case aj=0. If, now, a<0 then there exists a positive integer á

such that a+a*>0, hence, by taking the (H, d) transform of the se-

quence {hna)— [ah^+bh^]}, possessing the limit zero, we obtain

h^+ii-[ah!i+i)+bh^+i)}-^Q, «-+», and the last relation shows, by

the first part of the proof, that {s„| is summable Holder; whence the

rest of the proof follows now by Theorem 7.1. Q.E.D.

Theorem 8.1 and the other results of this section have already

been proved in [l] in the case a = l.
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An argument similar to that used in the proof of Theorem 8.1 (but

exploiting now Theorem E entirely and also using Theorem F as in

[l, proof of Theorem 6.2 and proof of Theorem 6.3]) yields

Theorem 8.2. Let a, b, a, ß and y be five real numbers satisfying

a+b = l, a<ß<y, O^a and a(ß — a)+b(y—a)>0. If, for some real

number 5> — 1, {sn} is summable Am and (i) ABa)— [ah^+bh^]

= Ol(1), as «—»oo, then {sn} is summable (H, a + 1) to s. If, further,

(ii) A„a)— [ah„ +bhny^] = 0(1), as n—»°°, then {sn} is summable

(H, — \+a+e) to s for each €>0.

The argument used in the proof of Theorem 5.2 of [l ] together with

Theorem 3.1 of the present paper enable us to obtain

Theorem 8.3. Let the nine real numbers a, a', b, b', a, ß, ß', y and y'

satisfy a<ß<y, a<ß'<y', a+b = a'+b' = \, a(ß-o)+b(y-a)>0

and a'(ß'-o) +b'(y'-a) >0. If

hñ — [ahn   + bhn  ]
lim-= l
n->» a(ß — a) + b(y — a)

then also

.    hn   — [ahn    +bhn   \
hm-= /.
*-• a'(ß' - a) + b'(y' - a)

Remark. Combining arguments of [l, §7], with propositions of this

note we may obtain results for the Borel method of summability,

similar to those of this section, which generalize those of [l, §7].

I do not state these results explicitly here.

9. Further properties of the Holder transformations. Given 2n+1

real numbers ai, a2, ■ ■ • , an, o, «i, a2, ■ ■ ■ , a„ satisfying a<<xi

<a2< ■ ■ ■ <a„ and ai+a2+ ■ • • +a„ = l we call the sequence

defined by

/   . "i, * ■ ' ,"n\

Di'«"-■•-*>}

/     ai, • • • ,an\ (n-ai* ' ' ' »a«\
TT\     a,, •••,<!*) ,(o)     .A"' a,, • ■ ■ , On) . (")
<7o = ha  ; Um — ho

™   h"  - [oih"1 + ■ ■ ■ + anh"" ]

+ £ FT-VZ-7^-\\ >n>0'
v=i   [Oi{ai — a) + ■ ■ ■ +an(an — a) \v

the
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/     01, • • • , an\
Jla; 1

\    ai, • • • , an/

transform of the sequence {sn}. Using results of the previous sections

it is easy to show that the

/     «i, • • • , a„\
Jla; 1

\     ah ■ • • , o„/

transformation is a Hausdorff transformation generated by the se-

quence {pm}, where

(m + l)-<* - [ai(m + l)-«i + • • • + an(m + l)-"»]
Mo = 1 ;   Pm =-j—--—-—--j-;

[ai(ai — a) + ■ ■ ■ + an(an — a)\m

m > 0.

Taking this into consideration we can prove now one of the main

results of this section, namely

Theorem 9.1. Given 2n + \ real numbers a\, a2, • • • , aB, «, «i,

ctt, ■ • • , a„ satisfying a<cti<a2< • • ■ <an, 0<min (ai, • • • , a»)

and a\+Oi+ ■ ■ • +a„ = l, the

(     «i,---, an\
Jla; 1

\     «i, • • • , aj

method of summability is equivalent to the (H, a + 1) method of sum-

mability; thus the

(     «!,•••, an\
Jla; I

\     ai, • • • , a„/

method of summability is regular if a ^ — 1.

The proof of Theorem 9.1 is the same as that of Theorem 4.1 but

now we have to use a simple modification of Lemma 3.2.

Now we mention a result which is more general than Theorem 9.1.

This generalization is obtained by using the following argument.

Let a, ß and y be three real numbers satisfying a<ß<y. If a(u)

is a nondecreasing and bounded function in ß^u^y which satisfies

a(y)-a(ß) = l then call

defined by
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hT -  Í   hn'da(t)

U0 = h0   ;    Un = h   + ¿_,->    n > 0,

v   |    (/ - a)<fa(/)
»»a

the

\     a(w)/i(m)>

transform of {sn}. It is easy to see that this transformation is a

Hausdorff transformation generated by the sequence {pn} where

(n + I)"» -  f\n+ l)-'da(t)

Po = 1;        pn =-' « > 0.

«•I    (< — a)aa(0

In the same way that Theorem 4.1 was proved we may prove

Theorem 9.2. // (i) a, ß and y are three real numbers satisfying

a<ß<y and (ii) a(u) is a nondecreasing and bounded function in

ßuu^.y satisfying a(y) —a(ß) = 1, then the

\    a(u)f

method of summability is equivalent to the (H, a + i) method; thus the

i(u);

method of summability is regular if a^z — 1.

It is easy to see that if in Theorem 8.1, Theorem 8.2 and Theorem

8.3 we replace expressions of the form h$? — [ah^+bh<my) ] by expres-

sions of the form h^ — f}h^da(u), where a(u) is a nondecreasing and

bounded function in ß^u^y satisfying a(y)— a(ß) = 1, and expres-

sions of the form a(ß— a)+b(y— a) by expressions of the form

f}(u—a)da(u), then the modified conclusions of these modified theo-

rems remain valid.
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ON A THEOREM OF J. L. WALSH

ARYEH DVORETZKY

1. In a recent paper [l] J. L. Walsh proved, among other results,

the following theorem:

Let the functions/„(x) (« = 1, 2, ■ ■ • ) and/(x) be p times differ-

entiate in the interval a<x<¿> and let/„(x) converge to/(x) in this

interval. Then, given any point x0£(a, b) there exists a sequence of

points x„£(a, b) such that

(1) lim xn = x0,        lim f/ (xn) - f" (x0).

The main purpose of this short note is to show that "in general"

there exists a sequence x„ satisfying the first condition of (1) and for

which fip)(x„) =flp)(xa) for all sufficiently large w; and when this does

not occur then for the corresponding « not only (1) holds but fnv)(x)

is close, in a sense which will be made precise, to f(p)(x0) in the

neighborhood of xo. While doing this we shall replace the convergence

assumption by a considerably weaker one.

2. Theorem. Let f(x) and fn(x) (» = 1, 2, • • • ) be p times differ-
entiable in the interval a<x<b and let

(2) lim      Inf     \fn(y)-f(x)\  =0
n-00   x£i,v£l

for every open sub-interval I of (a, b). Then, given any point x0E(a, b),

the sequence N= {«} caw be written as a union of two (not necessarily

both infinite) sequences Ni = {«1} and N2 = {«s} ¿« such a way that
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