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We choose the corresponding Fourier coefficients to define as be-

fore a new function g(x), whose Fourier series converges almost

everywhere since E "=i-^m< °°- Now we define {m,} to take on the

values m, »*(,,)<m5Î«*(„>+! for each p. Since the sequence {»*(,•)} is

lacunary, the almost everywhere convergence of sm¡i(x;f) to f(x) fol-

lows as before. For the sequence {m,},

<r(»*(/i)+i)      nkirt+i — nk(rt _ 1

nk(rt+i nk(ji)+i X(i

for each p. Since the limit of the right side is 1, the theorem is proved.
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1. Let/(2) be integrable L in ( — it, it) and periodic with period

27T and let

1 A 1 A
(1.1) /(/) ~ — a0 + E (°n cos nt + bn sin nt) = — a0 + E ^n(i)-

2 1 2 1

The differentiated conjugate series of (1.1) at t=x is

00 00

(1.2) — E x(an cos nx + bn sin nx) = — E nAn(x).
1 1

We write

<t>(t) = f(x + t)+ f(x -I)- 2](x),        hit) = -^- - d,
4 sin p

where d is a function of x.

Let Sn, tn, and <rn be the «th partial sum, the first Cesàro mean,

and the first logarithmic mean of the series (1.2) respectively. The
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object of the present note is to prove the following

Theorem. If

' h(u) '
(1.3)

then

/'   | *(«) I /      1 \-du = oÍ log — J as t—>0,

d
lim  (<T2» —  (Tn)   = - log 2.
n—*« IT

This is analogous to results for the conjugate series of (1.1) contained

in [3; l]. Plainly condition (1.3) implies that h(t) is integrable L in

(0, 7r). In a previous note [2] it was proved that, under condition

(1.3),

2d
in ~ — log n,

which in turn implies that

d
(7„ "*/ — log n.

ir

Justification for this statement is provided by the identity

t»    .     1     •   lk-i
Z — (h = 0).

log n     log n k=i    k

It is enough to prove the theorem for the special case in which d = 0.

To justify this assertion, we may restrict ourselves to the special case

in which x = 0 without any loss of generality.

Consider first the case in which

1 1 1 "   cos nt
f(t) =—irt-t2 ~ — 7T2 - Z — •

2 4 6 £?i     n2

In this special case both the hypothesis and the conclusion of the

Theorem remain true. In the general case, write

2d / 1 1    \
f(t)=Mi)--(-*t--t2),

■k \ 2 4    /

with d corresponding tofi(t) taken as 0.

2. Proof of the Theorem. We have



1956] DERIVED CONJUGATE SERIES OF A FOURIER SERIES 399

1    /•»
rArix) = — I    <f>(t)r cos rtdt

T Ja

4   rT Id
= — I    hit)  sin — I — (sin r¿)¿í.

3T  Jo 2     ¿7

Therefore

5„ =-I    A(<) sin — t — ( E sin rt )dt
ir J a 2      dt\ r=i I

2   /•' 1     á /      1 )
=-I    hit) sin—/—<cot — til — cos nt) + sin nt> dt.

t Jo 2     dt {       2 )

Thus we have

1    A Sk

log n k=i   k

1    JU 1 — cos kt
h(t) sin — t — -{cot

log:

2       r* 1      ¿ i       1     "
=-I    hit) sin— t — <cot — ¿E

ir log m J o 2      ¿7 (.       2    k=i

JL sin ¿A+ £_—u.
*-i      k   )

It follows that

(2.1) <72n —  ffn  =   — f     hit)Knit)dt,
Joir log « log 2« J o

where

1 I- 2" n -i

Kn(t) = sin — t\ log » E cos *t ~ log 2« E cos *t
2 L i i J

1      á (       1   r £ 1 - cos kt
+ sin7^rtTil0gw?-^r-

"   l — cos kr\)

By means of the elementary relations

m / 1 \       ™ 11
E cos kt = O (-), E sin £/ = — cot — /(l - cos ml) + 0(1)
T V sin 0/2)/    i 2 2

we obtain
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i l  r      ¿2,
K„(t) = O(log n)-cosec — /   log n ¿_,

2 2   L i

12. 1 — cos kt

"    1 — cos kl~\
(2.2) -log2»£-J

1 1 1
H-cos — ¿cot — /[log«(l — cos 2nt) — log 2w(l — coswOJ;

the first square bracket may be also written in the form

»   1 - cos kt ^ 1 - cos kt
- log 2 X, ■-:-h log « Z-:-

1 k „+1 k

We now use the result [l, proof of Theorem C] that (1.3) implies

/.

1
h(t) cot —1(\ — cos nt)dt = o(log n).

o 2

Since h(t) is integrable, this is also true with h(t) cot (t/2) replaced by

h(t) cosec (t/2), or by h(t) cos (t/2) cot (t/2). From (2.1) and (2.2)

we obtain

/ "   log k 4^ log k\
or - an = o(l) + 0 ( log-2 « Z -7- + log"1 » £ -7-) = o(l).

\ 1 k n+l        k    /

This completes the proof of the theorem.

Finally we must express our thanks to the referee for some sug-

gestions which improved the presentation and simplified the proof.
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