$$
\sum_{|n|=n_{k(\mu)}+1}^{n_{k(\mu)+1}}(\log |n|)\left|c_{n}\right|^{2} \leqq \epsilon_{k(\mu)} \log n_{k(\mu)+1} \leqq 2 D_{\mu}
$$

We choose the corresponding Fourier coefficients to define as before a new function $g(x)$, whose Fourier series converges almost everywhere since $\sum_{\mu=1}^{\infty} D_{\mu}<\infty$. Now we define $\left\{m_{\nu}\right\}$ to take on the values $m, n_{k(\mu)}<m \leqq n_{k(\mu)+1}$ for each μ. Since the sequence $\left\{n_{k(\mu)}\right\}$ is lacunary, the almost everywhere convergence of $s_{m_{\nu}}(x ; f)$ to $f(x)$ follows as before. For the sequence $\left\{m_{\nu}\right\}$,

$$
\frac{\sigma\left(n_{k(\mu)+1}\right)}{n_{k(\mu)+1}} \geqq \frac{n_{k(\mu)+1}-n_{k(\mu)}}{n_{k(\mu)+1}}=1-\frac{1}{\lambda_{\mu}}
$$

for each μ. Since the limit of the right side is 1 , the theorem is proved.

Reference

1. A. Zygmund, Trigonometrical series, Warsaw, 1935.

University of Connecticut

ON THE LOGARITHMIC MEAN OF THE DERIVED CON JUGATE SERIES OF A FOURIER SERIES

R. MOHANTY AND M. NANDA

1. Let $f(t)$ be integrable L in $(-\pi, \pi)$ and periodic with period 2π and let

$$
\begin{equation*}
f(t) \sim \frac{1}{2} a_{0}+\sum_{1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right)=\frac{1}{2} a_{0}+\sum_{1}^{\infty} A_{n}(t) . \tag{1.1}
\end{equation*}
$$

The differentiated conjugate series of (1.1) at $t=x$ is

$$
\begin{equation*}
-\sum_{1}^{\infty} x\left(a_{n} \cos n x+b_{n} \sin n x\right)=-\sum_{1}^{\infty} n A_{n}(x) \tag{1.2}
\end{equation*}
$$

We write

$$
\phi(t)=f(x+t)+f(x-t)-2 f(x), \quad h(t)=\frac{\phi(t)}{4 \sin \frac{1}{2} t}-d,
$$

where d is a function of x.
Let S_{n}, t_{n}, and σ_{n} be the nth partial sum, the first Cesàro mean, and the first logarithmic mean of the series (1.2) respectively. The

[^0]object of the present note is to prove the following
Theorem. If
\[

$$
\begin{equation*}
\int_{t}^{\pi} \frac{|h(u)|}{u} d u=o\left(\log \frac{1}{t}\right) \text { as } t \rightarrow 0 \tag{1.3}
\end{equation*}
$$

\]

then

$$
\lim _{n \rightarrow \infty}\left(\sigma_{2^{n}}-\sigma_{n}\right)=\frac{d}{\pi} \log 2 .
$$

This is analogous to results for the conjugate series of (1.1) contained in [3;1]. Plainly condition (1.3) implies that $h(t)$ is integrable L in $(0, \pi)$. In a previous note [2] it was proved that, under condition (1.3),

$$
t_{n} \sim \frac{2 d}{\pi} \log n,
$$

which in turn implies that

$$
\sigma_{n} \sim \frac{d}{\pi} \log n
$$

Justification for this statement is provided by the identity

$$
\sigma_{n}=\frac{t_{n}}{\log n}+\frac{1}{\log n} \sum_{k=1}^{n} \frac{t_{k-1}}{k} \quad\left(t_{0}=0\right)
$$

It is enough to prove the theorem for the special case in which $d=0$. To justify this assertion, we may restrict ourselves to the special case in which $x=0$ without any loss of generality.

Consider first the case in which

$$
f(t)=\frac{1}{2} \pi t-\frac{1}{4} t^{2} \sim \frac{1}{6} \pi^{2}-\sum_{n=1}^{\infty} \frac{\cos n t}{n^{2}} .
$$

In this special case both the hypothesis and the conclusion of the Theorem remain true. In the general case, write

$$
f(t)=f_{1}(t)-\frac{2 d}{\pi}\left(\frac{1}{2} \pi t-\frac{1}{4} t^{2}\right)
$$

with d corresponding to $f_{1}(t)$ taken as 0 .
2. Proof of the Theorem. We have

$$
\begin{aligned}
r A_{r}(x) & =\frac{1}{\pi} \int_{0}^{\pi} \phi(t) r \cos r t d t \\
& =\frac{4}{\pi} \int_{0}^{\pi} h(t) \sin \frac{1}{2} t \frac{d}{d t}(\sin r t) d t .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
S_{n} & =-\frac{4}{\pi} \int_{0}^{\pi} h(t) \sin \frac{1}{2} t \frac{d}{d t}\left(\sum_{r=1}^{n} \sin r t\right) d t \\
& =-\frac{2}{\pi} \int_{0}^{\pi} h(t) \sin \frac{1}{2} t \frac{d}{d t}\left\{\cot \frac{1}{2} t(1-\cos n t)+\sin n t\right\} d t .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
\sigma_{n}= & \frac{1}{\log n} \sum_{k=1}^{n} \frac{S_{k}}{k} \\
= & -\frac{2}{\pi \log n} \int_{0}^{\pi} h(t) \sin \frac{1}{2} t \frac{d}{d t}\left\{\cot \frac{1}{2} t \sum_{k=1}^{n} \frac{1-\cos k t}{k}\right. \\
& \left.\quad+\sum_{k=1}^{n} \frac{\sin k t}{k}\right\} d t .
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\sigma_{2^{n}}-\sigma_{n}=-\frac{2}{\pi \log n \log 2 n} \int_{0}^{\pi} h(t) K_{n}(t) d t \tag{2.1}
\end{equation*}
$$

where

$$
\begin{aligned}
K_{n}(t)= & \sin \frac{1}{2} t\left[\log n \sum_{1}^{2^{n}} \cos k t-\log 2 n \sum_{1}^{n} \cos k t\right] \\
+ & \sin \frac{1}{2} t \frac{d}{d t}\left\{\operatorname { c o t } \frac { 1 } { 2 } t \left[\log n \sum_{1}^{2^{n}} \frac{1-\cos k t}{k}\right.\right. \\
& \left.\left.-\log 2 n \sum_{1}^{n} \frac{1-\cos k t}{k}\right]\right\}
\end{aligned}
$$

By means of the elementary relations

$$
\sum_{1}^{m} \cos k t=O\left(\frac{1}{\sin (t / 2)}\right), \sum_{1}^{m} \sin k t=\frac{1}{2} \cot \frac{1}{2} t(1-\cos m t)+O(1)
$$

we obtain

$$
K_{n}(t)=O(\log n)-\frac{1}{2} \operatorname{cosec} \frac{1}{2} t\left[\log n \sum_{1}^{2 n} \frac{1-\cos k t}{k}\right.
$$

$$
\begin{equation*}
\left.-\log 2 n \sum_{1}^{n} \frac{1-\cos k t}{k}\right] \tag{2.2}
\end{equation*}
$$

$$
+\frac{1}{2} \cos \frac{1}{2} t \cot \frac{1}{2} t[\log n(1-\cos 2 n t)-\log 2 n(1-\cos n t)] ;
$$

the first square bracket may be also written in the form

$$
-\log 2 \sum_{1}^{n} \frac{1-\cos k t}{k}+\log n \sum_{n+1}^{2 n} \frac{1-\cos k t}{k}
$$

We now use the result [1 , proof of Theorem C] that (1.3) implies

$$
\int_{0}^{\pi} h(t) \cot \frac{1}{2} t(1-\cos n t) d t=o(\log n) .
$$

Since $h(t)$ is integrable, this is also true with $h(t) \cot (t / 2)$ replaced by $h(t) \operatorname{cosec}(t / 2)$, or by $h(t) \cos (t / 2) \cot (t / 2)$. From (2.1) and (2.2) we obtain

$$
\sigma_{2^{n}}-\sigma_{n}=o(1)+O\left(\log ^{-2} n \sum_{1}^{n} \frac{\log k}{k}+\log ^{-1} n \sum_{n+1}^{2 n} \frac{\log k}{k}\right)=o(1)
$$

This completes the proof of the theorem.
Finally we must express our thanks to the referee for some suggestions which improved the presentation and simplified the proof.

References

1. M. L. Misra, On the determination of the jump of a function by its Fourier coefficients, Quart. J. Math. Oxford Ser. vol. 18 (1947) pp. 147-156.
2. R. Mohanty and M. Nanda, Note on the first Cesdro mean of the derived conjugate series of a Fourier series, Proc. Amer. Math. Soc. vol. 6 (1955) pp. 594-597.
3. O. Szász, The jump of a function determined by its Fourier coefficients, Duke Math. J. vol. 4 (1938) pp. 401-407.

Ravenshaw College, Cuttack, India

[^0]: Received by the editors December 31, 1954, and, in revised form, June 20, 1955.

