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1. Introduction. Consider the equation

(1) /(*) =  f   k(ux)g(u)du,
Ja

where/(x) and k(x) are known functions and where we are required

to determine the function g(x). The purpose of this paper is to in-

vestigate the conditions under which this problem can be solved by

means of an inversion formula in the nature of an integral transform.

An example of such an inversion formula occurs in the theory of

Fourier Transforms. I shall prove that the Mellin transform of k(x)

can be classified in such a manner that with each class can be as-

sociated a particular type of integral transform.

The two functions/(m) and F(s) are said to be Mellin transforms

of each other if they are related in the following manner :

(2) Fis) =  f   f(u)u'-ldu.
Ja

Associated with (2) is the reciprocal formula

(3) /(«) = — F(s)u-ds.
¿TCI J c-ix

Here c is a real constant and we shall always take c = l/2. All pairs

of functions written in this form,/(w), F(s); g(u), G(s); k(u), K(s);

etc. will, in this paper, be Mellin transforms of each other and will be

related as/(w) and F(s) are in (2) and (3). We shall frequently write

s = l/2+it, so that, in the integral of (3), t will vary from — oo to

+ <». We shall also refer to k(x) as a kernel.

In order to illustrate the results obtained later we shall first pro-

ceed formally. Multiply (1) by x"-1 and integrate with respect tox

from 0 to «. The double integral on the right-hand side can be

evaluated by writing x=v/u and we then find that

(4) Fis) = K(s)G(í - s).

This is equivalent to
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K(S)F(1 - S)
(5) G(s) =

K(s)K(í - s)

Now in one of the classifications to be discussed later on K (s) will

satisfy the functional equation

(6) K(s)K(l - s) =
a + bs(l - s) '

where a and b are constants. From (5) and (6) we now deduce

(7) G(s) = aK(s)F(l - s) + bs(l - s)K(s)F(l - s).

On multiplying (7) by x-*, and, integrating along the line s = l/2+it,

from t = — oo to + «5, and then using formulae related to (3) we ob-

tain the following result:

/d   ("° dk(ux)f(u)du + b— I     xk(ux) — [uf(u)\du.
o dx J o du

We have thus solved (1), regarded as an equation with g(u) as an

unknown function, by a method akin to the theory of Fourier Trans-

forms, Titchmarsh [l, Chapter 8]. In fact (1) and (8) reduce to a

pair of Fourier transforms in the case when b = 0.

To give a simple illustration of this result when b9£0 consider the

case when

(9) K(s)
a + s

where a is a constant. Evidently

1
(10) K(s)K(l - s) =

a2 + a + s(l - s)

so that (6) is satisfied. It is easy to verify from (2) that K(s) defined

in (9) is the Mellin transform of k(u)=u" (0<u<l), ¿(w)=0 (u>l).

Equation (1) then becomes

uax"g(u)du,
o

and the inversion formula (8) becomes

»uz d rllx d .       ,
(12)   g(x) = (a2 + a)  I      uaxag(u)du -\-|      uaxa+1— {uf(u)\du.

J o dx J o du
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On integrating the second integral of (12) by parts and then differ-

entiating, (12) reduces to

(13) g(x)=-f(-)--J'(-).
X      \ X / X1       \ X /

It is now easily verified that (11) and (13) are essentially the same

equation. Another example is given by (60), §7.

In §2 we catalogue some properties of Mellin transforms needed for

the proof of (8). In §§3 and 4 we shall prove (8) and some closely

related theorems. In §§5 and 6 we shall establish integral transforms

which are symmetrical in form, unlike (1) and (8) which are obviously

unsymmetrical. In §7 we shall discuss the classification of K(s) which

gives rise to integrals such as (1) and (8).

2. Properties of Mellin transforms. A. (Titchmarsh [l, §3.17].) If

f(u)GL2(0, 00) then

(14) l.i.m.  f   f(u)u<-ldu = F(s),
0-"»    J l/a

where l.i.m. denotes, as usual, the limit in mean square. (14) asserts

that l.i.m. of the left-hand side exists and that this limit is denoted

by F(s). Furthermore F(s) possesses the following properties:

F(s)GL2(l/2-ioo, l/2+î'oo) and

I       /. l/2+>a

(15) l.i.m.—I F(s)u->ds = f(u).
a-»»    27TÍ J 1/2—(a

Conversely, if F(s)EL2(l/2-i<x>, 1/2+ioo), then the limit in (15)

exists and defines a function f(u) with the following properties:

f(u)EL2(0, 00) and (14) is true.

In future we shall write f(u)£.L2 and F(s)G.L2 where it is to be

understood that for a function denoted by a small letter, such as /,

the range of integration is from 0 to 00 and for a function denoted by a

capital letter, such as F, the range is from 1/2—¿00 to 1/2+ioo.

B. (Titchmarsh [l, §3.17].) If either f(u)EL2 and g(u)EL2, or

F(s)EL2 and G(s)EL2, then

f(u)g(u)du = — F(s)G(l - s)ds.
0 ¿TTl J 1/2-ioo

We shall use (16) in a slightly different form. If f(u)EL2 then,

considered as a function of u, we also have/(wx)G-£<2. Also, from (2)

or (3), if F(s) is the Mellin transform of f(u) then F(s)x~' is the
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Mellin transform of f(ux). Hence (16) can be written in the form

/I oo 1 n 1/2+ioo

f(ux)g(u)du = —; I F(s)G(l - s)x-<ds.
a 2iri J 1/2-100

3. Theorem   1. //   (i)   on   the   line   s = l/2+it   (— <*> <t< <x>),

\G(s)sc+l\ (c>0) and \H(s)\ are both bounded; (ii)

K(s) = H(s)/(m + ns),

where m and n are constants and K(s) has no poles on the line s = l/2+zí;

(iii) H(s)H(l-s) = í and (iv)

k(ux)g(u)du
o

then f(u) EL2 and

/d   f° dk(ux)f(u)du + b — I     xk(ux) — \uf(u))du,
a dxJo du

where a — m2+mn and b = n2.

Proof. From (i) and (ii), G(s)EL2 and K(s)EL2. Hence, from

B,§2, it follows that the integral in (18) exists and that we have

J        n 1/2+too

(20) f(x) = —  I K(s)G(l - s)x-ds.
2iri J i/1/2-ioo

Now it is evident from (i) and (ii) that K(s)G(l —s)EL2, hence from

A,§2 we conclude that

(21) F(s) = K(s)G(i - s).

Again from (ii) and (iii) we have

1

(m + ns)(m + n — ns)

1

(22) K(s)K(l - s) =

(23)
a + bs(i - s)

where a = m2+mn and b = n2. Hence, from (21) we have

F(\ - s)       K(s)F(\ - s)
(24) Gis) = —- = —^-

Kil-s)      Kis)Kil - s)

(25) = oKis)Fil - s) + bKis)Fil - j)s(l - *).
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But, from (i), (ii) and (21), we can deduce that on the line

5 = 5 + it,

I F(s)sc+2| (c>0) is bounded. Hence all the integrals in the following

equation converge and so from (25) it follows that

(26)

d   /•»/«+*" Gis) d   /•!/«■*• Kis)
— I -x1-«^ = o—| -Fil - s)x1-"ds
dx J 1/2-too   1 — j dxJ 1/2-100   1 — s

d   rll2+ix
+ 6—1 Kis)Fii - s)sxl~'ds.

dx J1/2-.«

We shall complete the proof by showing that (26) and (19) are the

same equation.

Dealing first with the term on the left of (26) we have, from (i),

f\%-iZG(s)x~'ds is uniformly convergent with respect to x, for any

x-interval which excludes the value x = 0. Hence

¿     /• l/2+ioo   Q/s\ f. 1/2+ioo

(27) —I ——x*-ds=\ Gis)xr'ds
dx J 1/2-ioo   1 — s                J 1/2-ioo

(28) = Ixigix),

on using A, §2, since Gis)EL2.

Dealing with the first term on the right of (26) we have already

shown that on the line s = l/2+it, | F(s)sc+2\ (OO) is bounded. Cou-

pling this with conditions (i) and (ii) we see that f\%t\ZK(s) F(\ — s)x~'ds

is uniformly convergent with respect to x in any interval which does

not include x = 0. Hence

d     /" l/2+i»   Kis) /.1/2+ioo

(29) — I —— F(l - s)xl~'ds =  I K(s)F(l - s)x~sds
dx J 1/2-ioo   1 — s                                 J 1/2-ioo

(30) = 2*i I    kiux)fiu)du,
J a

on using B, §2. The use of B, §2 is justified since it is evident from the

behaviour of Kis) and Fis) on the line s = l/2+ir that both these

functions belong to Z,2.

The last term in (26) is dealt with in the same way but presents a

little more difficulty. It is evident from the fact that| /7(5)sc+2| (OO)

is bounded on the line s = 1/2+it that F(s) EL2 and that the integral

of (32) below is uniformly convergent with respect to u, for any

M-interval which does not include u = 0. Hence
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d   . .        di    /»1/2+ioo

(31) - {«/(«)} = - — I F(s)u>-ds
du du   ¿VI J 1/2—ioo

l        /» 1/2+.00

(32) = TI
¿Ti O l/2-í«,

Consequently the Mellin transform of d{uf(u)}/du is F(s)(l— s).

From the boundedness of | F(s)sc+2| (c>0) on the line s = l/2+it it

follows that F(s) (1 —s) G£2 and since A(s) £.L2 we deduce from B, §2

that

/> 1/2+joo
F(s)(l - s)u~'ds.

(33)

d   /•1/Í+»'«

— A(i)F(l - s)**1—tfe
dx J l/2-iocd 1/2-ioo

d  rM d
= 2iri— I     k(ux)x— \u(fu)\du.

dxJo du

On comparing the equations (19) and (26) term by term we see

from (28), (30), and (33) that these two equations are the same. This

completes the proof.

4. Theorem la. This is the converse of Theorem 1. // (i) on the line

s = \/2+it (- oo <t< oo), I F(s)s<+2| (c>0),andH(s) are both bounded;

(ii) and (iii) as in Theorem 1 both hold then equation (19) implies that

g(x)EL2 and (18) is true.

These conditions enable us to apply the arguments of theorem

1 in reverse order and so it is not necessary to give the proof in detail.

Theorem lb. Let fi(x) and gi(x) be related in the same manner as

f(x) and g(x) are in (18). Also let f2(x) and g2(x) be similarly related.

Then, if Gi(s) and G2(s) both satisfy the same conditions as G(s) does

in Theorem 1 and K(s) satisfies the same conditions as K(s) does in

Theorem 1, we have

/» OO >»O0

fi(ux)gi(u)du =   I    fi(ux)gi(u)du.
o Jo

Proof. The methods used in the proof of Theorem 1 to establish

(21) can be used here to establish the following results:

(35) Fi(s) = K(s)Gi(l - s),

(36) F2(s) = K(s)Gi(l - s).

These methods also enable us to state that all the functions of (35)

and (36) belong to L2.

Evidently from (35) and (36) we have
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(37) Fi(j)G2(1 - s) * F2(s)G1(l - s).

On multiplying (37) by x~' and integrating with respect to 5 from

1/2—¿oo to 1/2+ioo we may then apply (17) to the result so ob-

tained. The final conclusion is then the equation (34) above.

5. A symmetrical inversion formula. In this section we shall deal

with the case when

His)
(38) Kis) =

a + 6j(1 - s)

where, as previously,

(39) His)Hil - s) = 1.

We then obtain a theorem which is symmetrical in form and which

closely resembles the Generalized Fourier Transform (Titchmarsh

[1, Chap. 8]).

Theorem 2. If (i) on the line s = \/2+it (- oo <t< ¡»), |G(<r)sc+2|

(c>0) and \H(s)\ are both bounded; (ii) K(s) =H(s)/{a+bs(l-s)},
where a and b are constants and K(s) has no poles on the line s = 1/2 +it ;

(iii) H(s)H(\-s) = \; and (iv)

Jd  px d
k(ux)g(u)du + b — I     k(ux)x — {ug(u)}du

o dxJo du

then f(x) EL2 and

/'" dp" d  .k(ux)f(u)du + b — I     k(ux)x — \uf(u) }du.
o dx J o du

Proof. The proof of Theorem 2 proceeds on much the same lines

as that of Theorem la, the converse of Theorem 1.

From (i) and (ii), G(s)EL2 and K(s)EL2 and the integral in (43)

below is uniformly convergent with respect to u, (in any interval

which excludes m = 0). Hence

d   . .il    puw*
(42) - {ug(u)} = - — G(s)u^-ds

au du ¿iri J 1/2-ioo

\       /. 1/2+ioo

(43) = —; I G(s)(\ - s)vr'ds.
2iri J i/2_ioo

Evidently, from (i), G(s)(i-s)EL2, hence by A, §2 and (43) the

Mellin transform of d{ug(u) }/du is G(s)(l— s). Also K(s)EL2, hence

from (17) B, §2 we have
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/•oo d 1        /«1/2+ioo

(44)      I     k(ux) — {ug(u)}du = —: I K(s)G(l - s)sx->ds.
Jo du 2iri J i/2-ioo

Finally from (i) and (ii), |K(s)G(í— s)sc+i\ (c>0) is bounded on the

line s = í/2+it and so, from uniform convergence of the integral on

the right-hand side of (45) below, we may deduce from (44) that

d   ("» d
— I     k(ux)x— \ug(u)\du
dxJo du

(45)

= +.f
2xi J i/

1/2+ioo

K(s)G(l - s)s(l - s)x"ds.
i— ¿00

Again, since K(s) and G(s) both belong to L2, from (17), B, §2, we

have

/. co 1        /* 1/2+ioo

k(ux)g(u)du = —; I K(s)G(l - s)x-"ds.
0 2iri J 1/2-xoo

Comparison of (45) and (46) with (40) now shows that the integrals

on the right-hand side of (40) exist and that

I       p l/2+íoo

(47) f(x) = ■—- I K(s)G(l - s) {a + bs(l - s)} x->ds.
2iri J i/2-ico

But, from (i) and (ii), | A(s)G(l -s) {a+bs(l -s) }s°+2\ (c>0) is

bounded on the line s = l/2+it and so the integrand on the right-

hand side of (47), as a function of s, belongs to L2. Hence, from

A, §2 and (47) we have

(48) F(s) = K(s)G(l - s){a+bs(l - s)}.

Finally, from (i), (ii) and (48) we conclude that | F(s)sc+2| (00) is

also bounded on the line s = l/2+it.

Therefore the integrals on the right-hand side of (41) must exist.

As we cannot assume that equation (41) is true let us denote the

right-hand side by p(x).

Since we have just proved that F(s) satisfies the same condition as

that imposed on G(s), it follows that we may deal with the right-

hand side of (41) in exactly the same manner as we have dealt with

the right-hand side of (40), i.e. we may replace/(x) by p(x) and g(u)

by f(u) in all the preceding arguments. Instead of (48) we then get

(49) P(s) = K(s)F(l - s){a + bs(l- s)}.

Now from (ii) and (iii) we have
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(50) K(s)K(l - s){a + bs(i - s)}2 = 1.

Hence, on replacing s by (1—5) in (48), multiplying the result by

(49) and using (50) we obtain

(51) Pis) - Gis).

Finally, since G(s)EL2 (and so therefore P(s)EL2 also) it follows

from A, §2 that

(52) p(x) = g(x)

almost everywhere. This evidently establishes (41) and so completes

the proof of Theorem 2.

6. Theorem 2a (Analogue of Parseval's Theorem). Letfi(x)

and gi(x) be related as f(x) and g(x) are in equation (40). Letf2(x) and

gz(x) be similarly related with the same kernel k(x) as is used for fi(x)

and gi(x). If Gi(s) and G2(s) each satisfy the condition imposed upon

G(s) in Theorem 2 and if K(s) also satisfies the conditions of that theorem

then
n oo /» oo

(53) j    fx(ux)f2(u)du =  I    gi(u)g2(ux)du.
Jo Ja

Proof. By the same arguments as are used in the proof of Theorem

2 to deduce equation (48) we can prove that

(54) Ft(s) = K(s)G1(l - s) {a + bs(i - s)}

and

(55) F2(s) = K(s)G2(l - s) {a + bs(l - s)}.

Hence, on replacing s by (1 — 5) in (55), multiplying the result by

(55) and using (50) we deduce that

(56) Fiis)F9il - s) = Gi(l - s)G2(s).

Also, as in the proof of Theorem 2, we can show that each of the

factors in (56) belong to L2.

Now multiply both sides of (56) by x-' and integrate with respect

to 5 from 1/2—¿oo to 1/2+ioo. On applying (17), B, §2 to theresult

so obtained we immediately establish equation (53) and so complete

the proof of Theorem 2a. If we divide (54) by (55) we can obtain a

result identical with (34). Owing to the symmetry of Theorem 2,

f(x) and g(x) can be interchanged, and so, for this case, (34) and

(53) are essentially the same. For Theorem 1, owing to the unsym-

metrical nature of equations (18) and (19) a result such as (53) does

not hold.
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7. A kernel classification. In this section we shall discuss the gen-

eration and classification of kernels k(x) such as are required for use

with Theorems 1 and 2.

The first class of kernels will be designated by the subscript zero.

The function ko(x) will belong to this class if its Mellin transform

Ko(s) is bounded on the line s = 1/2+1/ and also satisfies the func-

tional equation

(57) K0(s)Ko(l - s) = 1.

In this case ko(x) is the kernel of a generalized Fourier Transform

(Titchmarsh [l, Chapter 8], Hardy and Titchmarsh [2], Watson [3],

Paley and Wiener [4]). Large classes of such functions are well

known.

The second class of kernels will be designated by the subscript one.

The function ki(x) will belong to this class if its Mellin transform

Ki(s) is of the form

(58) Ki(s) = Ko(s)/(m + ns)

where K0(s) satisfies the conditions imposed upon the Mellin trans-

forms of functions of class ko(x) above. We shall also assume that

K~i(s) has no poles on the line s = l/2+it.

Since Ko(s) is bounded on the line s=-l/2+it, it follows that

K0(s)/(m+ns)GL2. Hence

1    /•!/«-<•   Ko(s)
(59) ki(x) = l.i.m.- I-ds

2iri J i/2-ico   m + ns

exists. Again, since Ao(s)Ao(l— s) =1, conditions (i), (ii) and (Hi) of

Theorem 1 are satisfied and consequently h(x) is a kernel which can

be used in the equations of this theorem.

In the example given in §1, equation (9) we made K0(s) = l and

m—a, n = \.

Another example is given by taking ir1/2^0(x) =21/2 cosx,

(ir/2yi2Ko(s) =T(s) cos (sir/2), and Ki(s) =KQ(s)/(l+s). The integral

of (59) may then be evaluated by means of the poles of Ki(s), all of

which lie on the left of the line of integration. We then obtain the

following result

/t\1/2 1 "       (-l)"x2n f00  cos M
(60) ( — )     ki(x) =-irx + Z —-■- * -in.

\2/ 2 „To (2n)!(l - 2n)        J x      u2

This function can serve as a kernel for Theorem 1.

If we start once again with the Fourier cosine transform, i.e. take

irll2k0(x) =21/2 cos x, and then write Kx(s) =K0(s)/(l -s) we find that
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<z = 0 and & = 1 in Theorem 1. We then obtain what is essentially

equivalent to the Fourier sine transform

Many other examples of kernels which can be used in Theorem 1

can be obtained by writing ko(x) =x1/2/„(x), where J,(x) denotes the

Bessel function of order v.

The next class of kernels are those which can be used with the

equations of Theorem 2. They will be designated by means of sub-

script two, i.e. k2(x) can be used in Theorem 2. Such kernels can be

generated from kernels of class one by means of convolution. The

actual method of generation is embodied in the following theorem.

Theorem 3. Let rx(x) and Si(x) be derived from the respective

generalised Fourier kernels r0(x) and sa(x) according to the method de-

scribed above, the constants m and n of (58) being the same in both

cases. Then

(61) k2(x) =  I    ri(ux)si(u)du
Ja

can serve as a kernel for use with Theorem 2.

Proof. We have to prove that K2(s) satisfies the condition im-

posed upon K(s) in Theorem 2, §5.

From the construction described above of kernels of class fa(x) we

have

(62) ici(s) = R0(s)/(m + ns)    and   S^s) = Sa(s)/(m + ns),

where

(63) Ro(s)Ra(l - s) = 1    and   Sa(s)S0(l - s) = 1

and |i?o(s)| and |50(i)| are both bounded on the line s = l/2+ii.

From the boundedness of |i?o(s)| and Sa(s)\ it follows from (63)

that Ri(s)EL2 and Si(s)EL2. Hence from (17), B, §2 we have

(64)
p°° 1     /»W8+«. Ko(s)Sa(l - S)
I    r1(ux)s1(u)du = — I-■-■- xr'ds,

J a 2iri J 1/2-ioo   (m + ns)(m + n — ns)

This shows that the integral of (61) exists and that

(65) Ktis) = H2(s)/{a + bs(l-s)}

where a = m2+mn, b = n2 and

(66) H2(s) = Ra(s)S0(l - s).

From (63) it follows that
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(67) H2(s)Hi(l - s) = 1

and from the boundedness of Ro(s) and So(s) it follows that H2(s) is

bounded on the line s = l/2+it. Thus K2(s) satisfies all the require-

ments imposed upon K(s) in Theorem 2. Consequently k2(x), as de-

fined by (61), can be used as a kernel in the integral transforms of

Theorem 2.

Evidently many examples of kernels of class k2(x) can be found by

means of this theorem.

This classifisation can be continued. Let H(s) be bounded on the

line s = l/2+it and satisfy the functional equation H(s)H(l — s) = 1

and let P {s(l — s)} denote a polynomial in powers of s (I — s) of degree

v. Then kernels of class 2v, kiy(x), would have Mellin transforms

H(s)/P{s(l — s)} and kernels of class 2p+1, k2r+i(x), would have

Mellin transforms H(s)/[P{s(l — s)} (m+ns)], where m and n are

constants. The integral transforms these kernels give rise to become

exceedingly intricate as v increases in value. For k2,(x) the transform

equations are symmetrical, as in Theorem 2, and each equation will

contain 2v terms in which there will be progressively increasing differ-

entiation with respect to u and x. For &2>.+i(x) the transform equations

are unsymmetrical, as in Theorem 1, the first equation will contain

2»»-+1 and the second 2p+2 terms. As in the even case, differentiations

of increasing order occur as we progress from one term of the equa-

tion to the next.
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