ON FINITE PROJECTIVE GAMES

MOSES RICHARDSON1

1. Preliminaries on simple games. Let $N = \{1, 2, \dots, n\}$ be a finite set of n elements termed players. Let \mathfrak{A} be the class of all subsets S of N; the elements S of \mathfrak{N} are termed coalitions. If $S \subset \mathfrak{N}$, let S+ denote the class of all supersets of elements of S, and S* the class of all complements of elements of S; in symbols, $S^+ = [X \in \mathfrak{N} | X \supset S]$ for some $S \in S$, $S^* = [X \in \mathfrak{N} | N - X \in S]$. By a simple game is meant an ordered pair $G = (N, \mathbb{W})$ where $\mathbb{W} \subset \mathbb{X}$ satisfies (1) $\mathbb{W} = \mathbb{W}^+$, (2) $\mathbb{W} \cap \mathbb{W}^* = 0$. The elements of \mathbb{W} are termed winning coalitions. The elements of $\mathfrak{L} = \mathfrak{N} - \mathfrak{W}$ are termed losing coalitions. The elements of $\mathfrak{B} = \mathfrak{L} \cap \mathfrak{L}^*$ are termed blocking coalitions. A simple game² is termed strong if $\mathfrak{B} = 0$. A simple game may be defined by specifying the class W^m CW of minimal winning coalitions. By an imputation is meant an ordered *n*-tuple of real numbers $x = (x_1, x_2, \dots, x_n)$ such that⁸ $x_i \ge 0$ and $\sum_{i=1}^n x_i = 1$. If $\mathfrak{U} \subset \mathfrak{N}$, let $\mathfrak{U}^0 = \mathfrak{N} - (\mathfrak{U}^+)^*$; \mathfrak{U}^0 is the class of all coalitions which intersect every element of \mathfrak{U} . If $\mathfrak{U} = \mathfrak{W}^m$ then $\mathfrak{A}^{0} = \mathfrak{L}^{*} = \mathfrak{W} \cup \mathfrak{B}$.

Suppose given a simple game (N, \mathcal{W}) , a nonempty class $\mathcal{U} \subset \mathcal{W}$, and real numbers a_1, a_2, \cdots, a_n such that

(i)
$$\sum_{i \in S} a_i = 1 \text{ for } S \in \mathfrak{A},$$

(ii)
$$\sum_{i \in S} a_i > 1 \text{ for } S \in \mathfrak{U}^0 - \mathfrak{U}.$$

Let $x^{(S)}$ denote the imputation of which the *i*th component is a_i if $i \in S$ and 0 otherwise. Then the finite set of imputations $X = [x^{(S)}|S \in \mathfrak{A}]$ is termed a *simple solution* of the game (N, \mathfrak{A}) . If $\mathfrak{A} = \mathfrak{A}^m$ then X is termed a *main simple solution* (cf. [4], pp. 443-444).

2. Finite projective games. The following remarks stem from

Presented to the Society, April 16, 1955; received by the editors November 4, 1954 and, in revised form, June 19, 1955.

¹ This work was done for the Logistics Project sponsored by the Office of Naval Research in the Department of Mathematics, Princeton University.

² The original definition of simple games in von Neumann and Morgenstern [4] is such as to forbid the existence of blocking coalitions. Thus the simple games of [4] are our strong simple games. The definitions used here are due to Shapley [5].

³ We use the (0, 1)-normalization. The precise relationship, not needed for reading this paper, between this normalization and that of [4] can be found explicitly in [2] or [3].

curiosity concerning a footnote in von Neumann and Morgenstern [4, p. 469, footnote 3], to the effect that finite projective geometries other than the seven-point one seem unsuitable for the "present purpose" of providing examples of simple games. The explanation of this statement is given by Theorem 1 below, in view of our footnote 2.

Consider the k-dimensional projective space $PG(k, p^n)$ whose field of coordinates is the Galois field $GF(p^n)$ where p is prime and n a positive integer. We define a simple game based on this space as follows. The players shall be all the points of the k-space. Since no two winning coalitions can be complementary, it is essential to define the game by choosing the minimal winning coalitions so that any pair of them intersect. Since an l-space and an m-space in a projective k-space must intersect if $l+m \ge k$, it is natural to select as minimal winning coalitions the linear subspaces of lowest dimension such that they all intersect pairwise. Thus, if k is even, k=2h, let the k-spaces be chosen; and if k is odd, k=2h+1, let the (k+1) spaces be chosen. The simple game thus defined will be denoted also by $PG(k, p^n)$ and will be termed a finite projective game.

A blocking coalition is one which is not winning but which intersects every winning coalition. Clearly, if k=2h+1, all the h-spaces are blocking coalitions. These blocking coalitions have fewer members than the minimal winning coalitions, since the number of points in a q-space is $1+p^n+p^{2n}+\cdots+p^{qn}$ (cf. the corollary to Theorem 2 below). The remainder of this note confines itself to the simplest even-dimensional case, namely the finite projective plane games $PG(2, p^n)$. Here, the lines are the minimal winning coalitions, and a blocking coalition is a set of points containing no line but intersecting every line.

THEOREM 1. The game $PG(2, p^n)$ is strong if $p^n = 2$, and not strong if $p^n > 2$. In particular, there exists a blocking coalition of $2p^n$ players if $p^n > 2$.

PROOF. Choose an arbitrary point b_1 as the first member of the proposed blocking coalition B. It intersects $1+p^n$ lines of the plane. Let l be one of these lines and let b_2, b_3, \dots, b_{p^n} be distinct points of l different from b_1 . Each of the points b_i $(i=2, 3, \dots, p^n)$ intersects p^n lines different from l. Together the set of points $(b_1, b_2, \dots, b_{p^n})$ intersect $(1+p^n)+(p^n-1)p^n=p^{2n}+1$ lines. Let a be the (p^n+1) th point of l; a cannot be put into a. There are a lines left unintersected by the points so far put into a, all these lines containing a.

⁴ Notation and basic facts concerning these finite projective spaces are due to Veblen and Bussey [8]. Another exposition can be found in Carmichael [1].

There are p^{2n} points of the plane not on l not yet used, p^n of them on each of the p^n lines through a just mentioned. We shall show that $p^n > 2$ is a necessary and sufficient condition that we can choose one point on each of these p^n lines to put into B so that no $p^n + 1$ points of B are collinear. There are $p^n \cdot p^n \cdot \cdots \cdot p^n = (p^n)^{p^n} = p^{np^n}$ available p^n -tuples of points that can be chosen so as to intersect the remaining p^n lines. If $p^n > 2$, then $p^{np^n} > p^{2n}$. The points $b_1, b_2, \cdots, b_{p^n}$ have intersected only p^{2n} lines other than l. Therefore not all these $p^{np^n}p^{n-1}$ tuples can colline with any of the points b_1, \cdots, b_{p^n} . Hence there exists a p^n -tuple which together with the points b_1, \cdots, b_{p^n} constitute a blocking coalition B of $2p^n$ members, if $p^n > 2$. If $p^n = 2$, this is impossible, cf. Figure 1. For the two remaining lines meeting at a contain 4 other points, say x and y on one line, and x' and y' on the other.

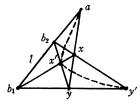


Fig. 1

Each of the 4 possible pairs xx', xy', x'y, or yy' collines with a used point of l. Therefore there exists no 4-person blocking coalition in this 7-point geometry PG(2, 2), and in fact no blocking coalition at all. This completes the proof.

3. Simple solutions.

THEOREM 2. If B is a blocking coalition in $PG(2, p^n)$, $p^n > 2$, then the number |B| of members of B is greater than the number $1+p^n$ of points on a line.

PROOF. Case 1. If p^n of the points of B are on some line l then they intersect $(p^n+1)+(p^n-1)p^n=p^{2n}+1$ lines, leaving p^n lines unintersected so far. A (p^n+1) th point not on l can then intersect only one new line. Since $1 < p^n$, not all lines are intersected by these p^n+1 points and $|B| \ge p^n+2$.

Case 2. Suppose the maximum number of collinear points in B is less than p^n . Then any p^n points of B intersect fewer than $p^{2n}+1$ lines since at least one of them must intersect fewer than p^n new lines. Then more than p^n , i.e. at least p^n+1 , lines are left unintersected. But the (p^n+1) th point of B cannot intersect more than p^n new lines.

Hence at least one line is still left unintersected and hence $|B| > p^n + 1$. This completes the proof.

COROLLARY. Every two-dimensional finite projective game $PG(2, p^n)$ has a main simple solution.⁵

PROOF. Let $a_i = 1/(p^n + 1)$. There exists a simple solution consisting of one imputation for each line or minimal winning coalition S assigning a_i to $i \in S$ and 0 to $i \in -S$. Our Theorem 2, above, implies condition (ii) of the definition of simple solution, namely $\sum_{i \in S} a_i > 1$ for $S \in (W \cup B) - W^m$, if $p^n > 2$. The case $p^n = 2$ is disposed of in [4, p. 469]. This completes the proof.⁶

4. Blocking coalitions. If min |B| is the minimum number of members in a blocking coalition in $PG(2, p^n)$, $p^n > 2$, then we have established that $p^n + 2 \le \min |B| \le 2p^n$. It would be of interest to sharpen this result for $PG(2, p^n)$ by determining what min |B| is exactly. The following fragmentary results bear on this problem.

THEOREM 3. If a set S of points of $PG(2, p^n)$ contains fewer than $2p^n$ members and if p^n of the points of S are collinear but S contains no line, then the complementary set -S contains at least one entire line.

PROOF. Let the points s_1, s_2, \dots, s_{p^n} of S all lie on a line l. Then they intersect $p^{2n}+1$ lines. Any further point of $S \cap (-l)$ intersects just one line not intersected by $S \cap l$, namely the line determined by that point and $l \cap (-S)$, and hence intersects at most one new line. Hence if $|S| \leq 2p^n-1$, the number of intersected lines is not greater than $(p^{2n}+1)+(p^n-1)\cdot 1=p^{2n}+p^n$. This leaves at least one line not intersected by S, hence contained in -S.

COROLLARY. The minimum number of elements in a blocking coalition of $PG(2, p^n)$, $p^n > 2$, which has p^n collinear points in it, is $2p^n$.

However $2p^n$ is not in general the minimum number of elements in a blocking coalition of $PG(2, p^n)$. We show below that it is so for PG(2, 3), but not for PG(2, 4); in the latter case we exhibit a 7-point blocking coalition.

THEOREM 4. In PG(2, 3), the minimum number of elements in a blocking coalition is 6.

⁵ The author is indebted to L. S. Shapley for pointing out this corollary in conversation.

⁶ We note parenthetically that $\sum_{i \in \mathbb{N}} a_i = 1 + p^{2n}/(1 + p^n) > 2$; compare (50:21) of p. 445 of [4] where the 2n is now replaced by 2 because of our use of the (0, 1)-normalization. See also [5]. Also parenthetically, it follows from Theorem 4 of [3] that $PG(2, p^n)$ is k-unstable for $p^n \le k < p^n + p^{2n}$ and k-stable for $1 \le k < p^n$.

PROOF. We use the cyclic representation of PG(2, 3):

in which the points are denoted by $0, 1, \dots, 12$ and the lines consist of the points in the vertical columns.

Put an arbitrary point b_1 into the proposed blocking coalition B; it intersects 4 lines. Put any point $b_2 \neq b_1$ into B; it intersects 3 new lines. Put $b_3 \neq b_1$, b_2 into B; b_3 may be (A) on the line b_1b_2 or (B) not. In case (A), b_3 intersects 3 new lines with a cumulative total of 10 lines intersected. In case (B), b_3 intersects 2 new lines for a total of 9 lines intersected. Put $b_4 \neq b_1$, b_2 , b_3 into B. In case (A), b_4 may not be collinear with b_1 , b_2 , b_3 because, if so, (b_1, b_2, b_3, b_4) is a line and hence a minimal winning coalition, not a blocking coalition; hence b_4 is not thus collinear with b_1 , b_2 , b_3 and therefore intersects one new line, for a total of 11 lines intersected. In case (B), b_4 may be: case (B1) on one of the lines b_1b_2 , b_1b_3 , or b_2b_3 in which case b_4 intersects 2 new lines for a total of 11; or case (B2) if b_4 is not on any of these 3 lines, then b_4 intersects one new line for a total of 10 lines intersected. Hence there exists no 4-person blocking coalition. Put $b_5 \neq b_1$, b_2 , b_3 , b_4 into B. In case (A), b_5 may not colline with b_1 , b_2 , b_3 , as before; hence b_5 intersects at most one new line for a total of either 11 or 12. In case (B1), b_5 may not colline with b_1 , b_2 , b_4 , say, for then (b_5, b_4, b_2, b_1) would be a line and hence not blocking, and hence yields a total of 12 at most. In case (B2), either: (i) b_5 is on one of the lines b_1b_2 , b_1b_3 , b_1b_4 , b_2b_3 , b_2b_4 , b_3b_4 or on two of them, so that b_5 intersects 1 or 2 new lines, respectively, for a total of 11 or 12 lines intersected; or (ii) if b_5 is on none of these lines then it intersects no new line, for a total of 10 lines intersected. Hence there exists no 5-person blocking coalition. The set (0, 1, 5, 6, 7, 11) is a 6-person blocking coalition. This completes the proof.

In PG(2, 4), we shall exhibit a 7-person blocking coalition. The cyclic representation of PG(2, 4) is:

```
1
        2
                     5
                                        10 11
                                                 12
                                                     13
                                                        14
                                                             15
                                                                 16
                                                                          18
                                                                              19
                                                                                   20
1
        3
                5
                                 9
                                    10
                    6
                                        11
                                             12
                                                 13
                                                     14
                                                         15
                                                             16
                                                                 17
                                                                                    0
                    9
                       10
                            11
                                12
                                    13
                                             15
                                                 16
                                                         18
                                                             19
                                                                 20
                                                                                    3
                                        14
                                                     17
       16
               18
                   19
                       20
                                 1
                                     2
                                         3
                                              4
                                                  5
                                                              8
                                                                      10
                                                                          11
                                                      6
  17
       18
          19
                             2
                                 3
                                     4
                                         5
                                              6
                                                  7
                                                      8
                                                          9 10 11 12
                                                                         13
```

⁷ The existence of such a cyclic representation for all $PG(k, p^n)$ was established by J. Singer [6]. Another proof appears in E. Snapper [7].

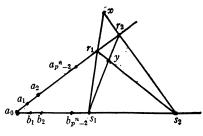


Fig. 2

Then the set (0, 1, 4, 5, 6, 15, 20) is a 7-person blocking coalition. This illustrates the following theorem.

THEOREM 5. If $p^n > 3$, there exists in $PG(2, p^n)$ a blocking coalition of $2p^n-1$ members.

PROOF. Cf. Figure 2. Let $a_0, a_1, \dots, a_{p^n-2}$ be distinct collinear points, and let $b_1, b_2, \dots, b_{p^{n-2}}$ be distinct points collinear with a_0 but not on the line a_0a_1 . These $2p^n-3$ points intersect (p^n+1) $+(p^n-2)p^n+(p^n-2)2=p^{2n}+p^n-3$ lines. Let r_1, r_2 be the remaining points on a_0a_1 and s_1 , s_2 the remaining points on a_0b_1 . Then let $x = r_1 s_1 \cap r_2 s_2$ and $y = r_1 s_2 \cap r_2 s_1$. The points x, y intersect the four remaining lines $r_1s_1, r_2s_1, r_1s_2, r_2s_2$. Hence the set $B = [a_0, a_1, \dots, a_{n-2}, a_$ $b_1, b_2, \cdots, b_{p^n-2}, x, y$ will constitute a blocking coalition of $2p^n-1$ points unless it contains a line. Now the collinear points a_0, a_1, \cdots , $a_{p^{n}-2}$ fall short of a line by two points, as do the collinear points $a_0, b_1, \dots, b_{p^n-2}$. The points x and y are on neither of the two lines a_0a_1 and a_0b_1 . Finally x and y colline with at most two points a_i , b_i of B, one from each of these two lines. (Note that x and y may colline with only one point a_0 of these two lines, since the diagonal points of a complete quadrangle colline if and only if p = 2, but this does not affect our argument; cf. [8] or [1].) Hence the set B is a blocking coalition unless the set (x, y, a_i, b_i) contains a line, which can happen only if $p^n+1 \le 4$, or $p^n \le 3$. This completes the proof.

That Theorem 5 does not provide the minimum number of elements in a blocking coalition is shown by the next theorem.

THEOREM 6. If d is a divisor of n, $1 \le d < n$, then there exists in $PG(2, p^n)$ a blocking coalition B with $2p^n - p^d + 1$ members.

PROOF. In $PG(2, p^d)$, let $a_0, r_1, r_2, \dots, r_{p^d}$ be the points of one line, let $a_0, s_1, s_2, \dots, s_{p^d}$ be the points of a second line, and let $a_0, x_1, x_2, \dots, x_{p^d}$ be the points of a third line through a_0 . The set $X = [x_1, x_2, \dots, x_{p^d}]$ clearly intersects all of the p^{2d} lines $r_i s_j$.

Since d is a divisor of n and $1 \le d < n$, $PG(2, p^d)$ can be imbedded (cf. [8] or [1]) in $PG(2, p^n)$. Let $L_r(L_s)$ be the line of $PG(2, p^n)$ containing the points $r_i(s_j)$. Let $A = [a_1, a_2, \dots, a_{p^n-p^d}]$ be the set of points of L_r not in $PG(2, p^d)$, and let $C = [c_1, c_2, \dots, c_{p^n-p^d}]$ be the set of points of L_s not in $PG(2, p^d)$. Let $B = [a_0] \cup A \cup C \cup X$. Since $[a_0]$ intersects $1+p^n$ lines of $PG(2, p^n)$, A intersects $(p^n-p^d)p^n$ new lines, C intersects $(p^n-p^d)p^d$ new lines, and X intersects p^{2d} new lines, it follows that B intersects all the lines of $PG(2, p^n)$. It is easily seen that B contains no line of $PG(2, p^n)$ and that $|B| = 2(p^n-p^d)+p^d+1 = 2p^n-p^d+1$. This completes the proof.

The following special case, communicated to the author by L. S. Shapley, shows that Theorem 6 does not provide a minimum.

THEOREM 7. If n = 2d, then $PG(2, p^{2d})$ contains a blocking coalition with $1 + p^d + p^{2d}$ members.

PROOF. The points of any $PG(2, p^d)$ imbedded in $PG(2, p^{2d})$ form such a coalition. For there are $1+p^d+p^{2d}$ lines which are extensions of the lines of the subgeometry, and $p^{2d}-p^d$ additional lines through each point of the subgeometry, making a total of

$$1 + p^d + p^{2d} + (1 + p^d + p^{2d})(p^{2d} - p^d) = 1 + p^{2d} + p^{4d}.$$

Since this accounts for all the lines of $PG(2, p^{2d})$, the coalition blocks. If $p^{2d} > 4$, this number $1 + p^d + p^{2d}$ is less than the number $2p^{2d} - p^d + 1$ provided by Theorem 6.

The problem of determining the number of points in a mininum blocking coalition remains open. In nongame-theoretic terms, the problem is to find the smallest number of points in a set which intersects every line but contains no entire line. Similar questions can be asked, of course, in the higher dimensional cases, in the non-Desarguesian geometries, and in those block designs in which every pair of distinguished sets intersect.

BIBLIOGRAPHY

- 1. R. D. Carmichael, Introduction to the theory of groups of finite order, Ginn, 1937.
- 2. D. B. Gillies, Some theorems on n-person games, Princeton University Doctoral Thesis, 1953, unpublished.
- 3. R. D. Luce, A definition of stability for n-person games, Ann. of Math. vol. 59 (1954) pp. 357-366.
- 4. J. von Neumann and O. Morgenstern, Theory of games and economic behavior, 2d ed., Princeton, 1947.
- 5. L. S. Shapley, Lectures on n-person games, Princeton University Notes, to be published.
- 6. J. Singer, A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc. vol. 43 (1938) pp. 377-385.

- 7. E. Snapper, Periodic transformations of affine and projective geometries, Canadian Journal of Mathematics vol. 2 (1950) pp. 149-151.
- 8. O. Veblen and W. H. Bussey, *Finite projective geometries*, Trans. Amer. Math. Soc. vol. 7 (1906) pp. 241-259.

BROOKLYN COLLEGE

NOTE ON LINEAR FORMS

J. B. ROBERTS

1. There has been some interest in solutions to the equation

$$(*) n = a_0 x_0 + a_1 x_1 + \cdots + a_s x_s$$

where the a_i are fixed positive integers with gcd=1 and the x_i are non-negative integers. In particular the question of finding the smallest n for which all greater integers have a solution has been investigated to some extent [1; 2]. It seems that the solution for s=1 has been known for some time but that the problem in general remains unsolved for s>1. In the paper of A. Brauer cited in the bibliography various upper bounds for the smallest n are given and the actual value of the smallest n is determined for the a_i consecutive integers. The main result of this paper is the determination of this smallest n when the a_i are in arithmetical progression.

2. Our investigation then is with the linear form

$$F = a_0 x_0 + \cdots + a_s x_s.$$

Throughout this paragraph we assume $2 \le a_0$, $\gcd a_i = 1$ and $a_j = a_0 + jd$. Thus the a_i are in arithmetical progression. Then we have the

THEOREM. F represents all $n \ge N$ where

$$N = \left(\left\lceil \frac{a_0 - 2}{s} \right\rceil + 1 \right) \cdot a_0 + (d - 1)(a_0 - 1)$$

with non-negative x_i and does not so represent N-1.

The proof of this result breaks down into a series of five lemmas.

LEMMA 1. The only integers represented by F when $x_0 + \cdots + x_s = m$ are $ma_0, ma_0 + d, ma_0 + 2d, \cdots, ma_0 + msd$.

PROOF. F represents ma_0 for $x_0 = m$, other $x_i = 0$. If F represents $ma_0 + kd$ with $\sum_{i=0}^{s} x_i = m$ and k < ms then $x_i > 0$ for some i < s. In the representation of $ma_0 + kd$ replace $x_0, \dots, x_i, x_{i+1}, \dots, x_s$ by $x_0, \dots, x_{i-1}, x_{i+1} + 1, \dots, x_s$. Now F represents $ma_0 + (k+1)d$.

Received by the editors June 28, 1955.