
ON FINITE PROTECTIVE GAMES

MOSES RICHARDSON1

1. Preliminaries on simple games. Let JV={l,2,---,»}bea

finite set of « elements termed players. Let 91 be the class of all sub-

sets 5 of N; the elements 5 of 31 are termed coalitions. If SC31, let

S+ denote the class of all supersets of elements of S, and S* the class

of all complements of elements of S ; in symbols, S+ = [X E 311X 3 S for

some S£s], S*= [X£3l| N—X£s]. By a simple game is meant an

ordered pair G = (N, W) where WC31 satisfies (1) W = tW+, (2)

wrw* = 0. The elements of W are termed winning coalitions. The

elements of £ = 31 — V? are termed losing coalitions. The elements of

(& = £i\£* are termed blocking coalitions. A simple game2 is termed

strong if ÖS = 0. A simple game may be defined by specifying the class

■W™CW of minimal winning coalitions. By an imputation is meant

an ordered «-tuple of real numbers x = (xi, x2, • • • , xn) such that5

xi = 0 and ¿?-i x{ = l. If 11C31, let 11° =31-(11+)*; 11° is the class

of all coalitions which intersect every element of 11. If c\L = V?m then

H0 = £* = WU(B.

Suppose given a simple game (N, *W), a nonempty class 11CW,

and real numbers Oi, a2, • • • , an such that

(i) E «. = 1 for S E It,
.es

(ii) E «< > 1 for 5 E 11° - It.
.•es

Let x(S) denote the imputation of which the ith component is a¿ if

iES and 0 otherwise. Then the finite set of imputations X= [x(S)| 5

Gil] is termed a simple solution of the game (N, "W). If cti. = 'Wm then

X is termed a main simple solution (cf. [4], pp. 443-444).

2. Finite projective games.  The  following  remarks stem  from
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1 This work was done for the Logistics Project sponsored by the Office of Naval
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2 The original definition of simple games in von Neumann and Morgenstern [4]

is such as to forbid the existence of blocking coalitions. Thus the simple games of

[4] are our strong simple games. The definitions used here are due to Shapley [S].

3 We use the (0, l)-normalization. The precise relationship, not needed for reading

this paper, between this normalization and that of [4] can be found explicitly in

[2] or [3].
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curiosity concerning a footnote in von Neumann and Morgenstern

[4, p. 469, footnote 3], to the effect that finite projective geometries

other than the seven-point one seem unsuitable for the "present pur-

pose" of providing examples of simple games. The explanation of this

statement is given by Theorem 1 below, in view of our footnote 2.

Consider the ¿-dimensional projective space PG(k, pn) whose field

of coordinates is the Galois field GF(pn) where p is prime and ra a

positive integer.4 We define a simple game based on this space as

follows. The players shall be all the points of the ¿-space. Since no

two winning coalitions can be complementary, it is essential to define

the game by choosing the minimal winning coalitions so that any

pair of them intersect. Since an /-space and an w-space in a projective

¿-space must intersect if l+m^k, it is natural to select as minimal

winning coalitions the linear subspaces of lowest dimension such that

they all intersect pairwise. Thus, if k is even, k = 2h, let the A-spaces

be chosen; and if k is odd, k = 2A+1, let the (A+l) spaces be chosen.

The simple game thus defined will be denoted also by PG(k, pn) and

will be termed a finite projective game.

A blocking coalition is one which is not winning but which inter-

sects every winning coalition. Clearly, if k = 2h + l, all the fe-spaces

are blocking coalitions. These blocking coalitions have fewer mem-

bers than the minimal winning coalitions, since the number of points

in ag-spaceis l-\-pn-\-p2n+ ■ • ■ +pqn (cf. the corollary to Theorem 2

below). The remainder of this note confines itself to the simplest

even-dimensional case, namely the finite projective plane games

PG(2, pn). Here, the lines are the minimal winning coalitions, and a

blocking coalition is a set of points containing no line but intersecting

every line.

Theorem 1. The game PG(2, pn) is strong if pn = 2, and not strong

if pn>2. In particular, there exists a blocking coalition of 2pn players

ifpn>2.

Proof. Choose an arbitrary point ¿»1 as the first member of the

proposed blocking coalition B. It intersects l+p" lines of the plane.

Let / be one of these lines and let ¿»2, bs, ■ ■ ■ , bpn be distinct points of

/ different from b\. Each of the points ¿>< (¿ = 2, 3, • • • , pn) intersects

pn lines different from I. Together the set of points (¿»1, b2, • • • , bpn)

intersect (l+pn) + (pn-l)pn=p2n+l lines. Let a be the (pn+l)th

point of /; a cannot be put into B. There are pn lines left uninter-

sected by the points so far put into B, all these lines containing a.

4 Notation and basic facts concerning these finite projective spaces are due to

Veblen and Bussey [8]. Another exposition can be found in Carmichael [l].
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There are p2n points of the plane not on / not yet used, pn of them

on each of the pn lines through a just mentioned. We shall show that

p">2 is a necessary and sufficient condition that we can choose one

point on each of these p" lines to put into B so that no pn+l points

of B are collinear. There are pn-p" • • ■ pn = (p")'" = pnp" available

¿>"-tuples of points that can be chosen so as to intersect the remaining

pn lines. If pn>2, then pn*n>p2n. The points 61, b2, ■ ■ ■ , bpn have

intersected only p2n lines other than /. Therefore not all these pnvnpn-

tuples can colline with any of the points bi, • • • , bpn. Hence there

exists a/'"-tuple which together with the points bi, ■ • ■ , bpn constitute

a blocking coalition B of 2pn members, if pn>2. If p" = 2, this is im-

possible, cf. Figure 1. For the two remaining lines meeting at a con-

tain 4 other points, say x and y on one line, and x' and y' on the other.

Each of the 4 possible pairs xx', xy', x'y, or yy' collines with a used

point of I. Therefore there exists no 4-person blocking coalition in this

7-point geometry PG(2, 2), and in fact no blocking coalition at all.

This completes the proof.

3. Simple solutions.

Theorem 2. If B is a blocking coalition in PG(2, p"), pn>2, then

the number \B\ of members of B is greater than the number 1 -\-pn of

points on a line.

Proof. Case 1. If p" of the points of B are on some line I then they

intersect (pn+l) + (pn — l)pn — p2n + l lines, leaving pn lines uninter-

sected so far. A (pn + l)th point not on / can then intersect only one

new line. Since Kpn, not all lines are intersected by these pn+l

points and \b\ ^pn+2.

Case 2. Suppose the maximum number of collinear points in B is

less than pn. Then any pn points of B intersect fewer than p2n-\-l lines

since at least one of them must intersect fewer than p" new lines.

Then more than p", i.e. at least pn+l, lines are left unintersected.

But the (/>" + l)th point of B cannot intersect more than pn new lines.
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Hence at least one line is still left unintersected and hence |b| >pn

+ 1. This completes the proof.

Corollary. Every two-dimensional finite projective game PG(2, p")

has a main simple solution}

Proof. Let ai — i/(pn+i). There exists a simple solution consist-

ing of one imputation for each line or minimal winning coalition 5

assigning a,- to i£S and 0 to ¿£ —S. Our Theorem 2, above, implies

condition (ii) of the definition of simple solution, namely 2>es fl»> 1

for S6(wU(B)-w", if pn>2. The case pn = 2 is disposed of in [4,

p. 469]. This completes the proof.6

4. Blocking coalitions. If min | B | is the minimum number of

members in a blocking coalition in PG(2, pn), pn>2, then we have

established that /»" + 2^min \B\ ^2pn. It would be of interest to

sharpen this result for PG(2, p") by determining what min \B\ is

exactly. The following fragmentary results bear on this problem.

Theorem 3. If a set S of points of PG(2, pn) contains fewer than

2pn members and if p" of the points of S are collinear but S contains no

line, then the complementary set —S contains at least one entire line.

Proof. Let the points Si, S2, • • • , V °f $ au h"e on a hne /. Then

they intersect p2n + i lines. Any further point of Si\( — I) intersects

just one line not intersected by Si^l, namely the line determined by

that point and li\( — S), and hence intersects at most one new line.

Hence if | S\ ^2p" — l, the number of intersected lines is not greater

than (p2n + l) + (pn —1)1 =p2n+p". This leaves at least one line not

intersected by 5, hence contained in —S.

Corollary. The minimum number of elements in a blocking coalition

of PG(2, pn), pn>2, which has pn collinear points in it, is 2pn.

However 2pn is not in general the minimum number of elements

in a blocking coalition of PG(2, pn). We show below that it is so for

PG(2, 3), but not for PG(2, 4) ; in the latter case we exhibit a 7-point

blocking coalition.

Theorem 4. In PG(2, 3), the minimum number of elements in a

blocking coalition is 6.

6 The author is indebted to L. S. Shapley for pointing out this corollary in con-

versation.

»We note parenthetically that £•£# a¡ = l+p*>/(l+p")>2; compare (50:21)

of p. 445 of [4] where the 2» is now replaced by 2 because of our use of the (0, 1)-

normalization. See also [S]. Also parenthetically, it follows from Theorem 4 of [3]

that PG (2, p") is ¿-unstable for p"-¿k<pn+p'ln and ¿-stable for 1 ¿k<pn.



462 MOSES RICHARDSON [June

Proof. We use the cyclic representation7 of PG(2, 3):

0123456789    10    11    12

123456789    10    11    12     0

3456789    10    11    12     012

9    10    11    12     012345678

in which the points are denoted by 0, 1, •• -, 12 and the lines consist

of the points in the vertical columns.

Put an arbitrary point h into the proposed blocking coalition B ;

it intersects 4 lines. Put any point b2?¿bi into B; it intersects 3 new

lines. Put bs^bi, b2 into B; bi may be (A) on the line W>2 or (B) not.

In case (A), b3 intersects 3 new lines with a cumulative total of 10

lines intersected. In case (B), b3 intersects 2 new lines for a total of 9

lines intersected. Put bn^bi, b2, b3 into B. In case (A), Z>4 may not be

collinear with bi, b2, b3 because, if so, (&i, b2, b3, bi) is a line and hence a

minimal winning coalition, not a blocking coalition; hence ¿»4 is not

thus collinear with b\, b2, b3 and therefore intersects one new line,

for a total of 11 lines intersected. In case (B), bi may be: case (BI)

on one of the lines bib2, bib3, or b2b3 in which case bi intersects 2 new

lines for a total of 11 ; or case (B2) if bi is not on any of these 3 lines,

then bi intersects one new line for a total of 10 lines intersected. Hence

there exists no 4-person blocking coalition. Put b<¡>j¿bi, b2, b3, bi into

B. In case (A), &6 may not colline with 61, b2, b3, as before; hence bs

intersects at most one new line for a total of either 11 or 12. In case

(BI), Z>6 may not colline with ¿1, b2, bi, say, for then (b6, bit b2, bi)

would be a line and hence not blocking, and hence yields a total of

12 at most. In case (B2), either: (i) ¿>6 is on one of the lines bib2,

bibi, bibi, b2b3, b2bi, b3bi or on two of them, so that 65 intersects 1 or 2

new lines, respectively, for a total of 11 or 12 lines intersected ; or (ii) if

bi is on none of these lines then it intersects no new line, for a total

of 10 lines intersected. Hence there exists no 5-person blocking coali-

tion. The set (0, 1, 5, 6, 7, 11) is a 6-person blocking coalition. This

completes the proof.

In PG(2, 4), we shall exhibit a 7-person blocking coalition. The

cyclic representation of PG(2, 4) is:

0 1     2    3    4    5    6    7    8    9   10   11   12   13   14   15   16   17   18   19   20
1 2    3    4    5    6    7    8    9   10   11   12   13   14   15   16   17   18   19   20    0
4    5    6    7    8    9   10   11   12   13   14   15   16   17   18   19   20    0     1     2     3

14   15   16   17   18   19  20    0    1    2    3    4    5    6    7    8    9   10   11   12   13
16   17   18   19   20    0     1     2     3     4     5     6     7     8     9   10   11   12   13   14   15.

7 The existence of such a cyclic representation for all PG(k, p") was established

by J. Singer [6]. Another proof appears in E. Snapper [7].
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Fig. 2

Then the set (0, 1, 4, 5, 6, 15, 20) is a 7-person blocking coalition. This

illustrates the following theorem.

Theorem 5. If p"> 3, there exists in PG(2, pn) a blocking coalition of

2p"—l members.

Proof. Cf. Figure 2. Let ao, ai, • • • , apn_2 be distinct collinear

points, and let bi, b2, • • • , öp»-2 be distinct points collinear with a0

but not on the line a0ai. These 2pn — 3 points intersect (pn+l)

-{■(pn —2)pn + (pn —2)2= p2n+pn-3 lines. Let ru r2 be the remaining

points on aoOi and Si, s2 the remaining points on a0ôi. Then let

x = r\SiC\r2S2 and y = ris2rv2si. The points x, y intersect the four re-

maining lines nsi, r2si, fii2, r2s2. Hence the set B = [ao, ait • • ■ , ap»_2,

bi, ô2, • • • , ¿>pn_2, x, y] will constitute a blocking coalition of 2pn — l

points unless it contains a line. Now the collinear points ao, ffi, • • ■ ,

apn_2 fall short of a line by two points, as do the collinear points

ao, bi, • • ■ , bpn-2- The points x and y are on neither of the two lines

aoai and a0bi. Finally x and y colline with at most two points a,, b¡

of B, one from each of these two lines. (Note that x and y may colline

with only one point ao of these two lines, since the diagonal points

of a complete quadrangle colline if and only Up = 2, but this does not

affect our argument; cf. [8] or [l].) Hence the set B is a blocking

coalition unless the set (x, y, a,-, b¡) contains a line, which can happen

only if pn + l ^4, or pn = 3. This completes the proof.

That Theorem 5 does not provide the minimum number of ele-

ments in a blocking coalition is shown by the next theorem.

Theorem 6. If d is a divisor of n, \=d<n, then there exists in

PG(2, pn) a blocking coalition B with 2pn—pd+l members.

Proof. In PG(2, pd), let ao, fi, r2, • • • , rpa be the points of one line,

let ao, íii S2, • ■ ■ , spd be the points of a second line, and let ao, Xi,

x2, • • • , Xpd be the points of a third line through a0. The set

X = [xi, x2, • • ■ , xpd] clearly intersects all of the p2d lines riSj.
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Since d is a divisor of « and l^d<n, PG(2, pd) can be imbedded

(cf. [8] or [l ]) in PG(2, pn). Let Lr (L.) be the line of PG(2, pn) con-

taining the points r¿ (sj). Let A = [öi, a2, • ■ ■ , apn-pn] be the set of

points of Lr not in PG(2, pd), and let C= [ci, c2, • • • , cpn_j,(¡] be the

set of points of L, not in PG(2, pd). Let 5= [a0]U^UCUZ. Since

[ao] intersects l+£n lines of PG(2, pn), A intersects (pn—pd)pn new

lines, C intersects (pn —pd)pd new lines, and X intersects p2d new lines,

it follows that B intersects all the lines of PG(2, pn). It is easily seen

that .B contains no line of PG(2,£n) and that \B\ =2(pn-pd)+pd+l

= 2pn—pd+l. This completes the proof.

The following special case, communicated to the author by L. S.

Shapley, shows that Theorem 6 does not provide a minimum.

Theorem 7. // n = 2d, then PG(2, pu) contains a blocking coalition

with l+pd+p2d members.

Proof. The points of any PG(2, pd) imbedded in PG(2, p2d) form

such a coalition. For there are l-\-pdJrp2d lines which are extensions

of the lines of the subgeometry, and p2d—pd additional lines through

each point of the subgeometry, making a total of

1 + Pd + P2d + (1 + Pd + PM)(PM - Pd) = 1 + P2d + Pid-

Since this accounts for all the lines of PG(2, p2d), the coalition blocks.

If p2d>i, this number l+pd-\-p2d is less than the number

2p2d — pd + l provided by Theorem 6.

The problem of determining the number of points in a mininum

blocking coalition remains open. In nongame-theoretic terms, the

problem is to find the smallest number of points in a set which inter-

sects every line but contains no entire line. Similar questions can be

asked, of course, in the higher dimensional cases, in the non-

Desarguesian geometries, and in those block designs in which every

pair of distinguished sets intersect.
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Brooklyn College

NOTE ON LINEAR FORMS

J. B. ROBERTS

1. There has been some interest in solutions to the equation

(*) ra = a0x0 + aiXi + • • • + a,x,

where the a¿ are fixed positive integers with gcd = 1 and the x¿ are

non-negative integers. In particular the question of finding the

smallest ra for which all greater integers have a solution has been

investigated to some extent [l; 2]. It seems that the solution for

5 = 1 has been known for some time but that the problem in general

remains unsolved for s>l. In the paper of A. Brauer cited in the

bibliography various upper bounds for the smallest w are given and

the actual value of the smallest ra is determined for the a,- consecutive

integers. The main result of this paper is the determination of this

smallest ra when the a,- are in arithmetical progression.

2. Our investigation then is with the linear form

F = aoxo + • • • + a,Xs-

Throughout this paragraph we assume 2 = ao, gcd a¿ = 1 and a¡ = a0+jd.

Thus the ai are in arithmetical progression. Then we have the

Theorem. F represents all n — N where

N = (p^-1 + l)-«o + id - l)(flo - 1)

with non-negative x¿ and does not so represent N—l.

The proof of this result breaks down into a series of five lemmas.

Lemma 1. The only integers represented by F when xo+ ■ ■ ■ +x, = m

are mao, mao-{-d, mao-\-2d, • • • , mao+msd.

Proof. F represents mao for x0 = m, other x< = 0. If F represents

mao + kd with 2ZSx, = w and k<ms then xt>0 for some i<s. In the

representation of ma0+kd replace x0, • • • , x,-, xl+i, • • • , x, by

xo, ■ • • , Xi—1, x,+1+l, • ■ ■ , x,. Now F represents mao + ik + l)d.
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