WITT'S CANCELLATION THEOREM IN VALUATION RINGS

PAUL J. MCCARTHY

Let K be a field with an exponential valuation V. The set of all $a \in K$ such that $V(a) \ge 0$ forms a ring R. The set of all $a \in R$ such that V(a) > 0 forms a prime ideal in R. This ideal consists of precisely the nonunits of R. R is called the valuation ring of K with respect to V.

If A and B are symmetric matrices over R, we say that A and B are congruent, and write $A \cong B$, if there is a unimodular matrix T over R such that $T^TAT = B$. T is unimodular if it has an inverse over R, i.e., if |T| is a unit in R. If A_1 and A_2 are square matrices, we write $A_1 \dotplus A_2$ for the matrix

$$\begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}.$$

If a is an element of R and A is a square matrix, $a \dotplus A$ will have the obvious meaning.

In this paper we prove the following result.

THEOREM. Assume that 2 is a unit in R. If A, B, and C are non-singular symmetric matrices over R, and if $A \dotplus B \cong A \dotplus C$, then $B \cong C$.

This theorem was first proved by E. Witt [5] for matrices over a field of characteristic not equal to 2. It was subsequently proved by B. W. Jones [2] for matrices over the ring of p-adic integers (p odd), by G. Pall [4] for Hermitian matrices over a skewfield of characteristic not equal to 2, and by W. H. Durfee [1] for matrices over a complete valuation ring with 2 a unit. Moreover, Durfee gave examples to show that the theorem is not true when 2 is a nonunit. We have not only eliminated the requirement that R be complete, but we give a proof which is considerably shorter than the proof of the corresponding theorem given by Durfee. The theorem is an immediate consequence of the following two lemmas.

LEMMA 1. Assume that 2 is a unit in R. If A is any $n \times n$ symmetric matrix over R, there are elements a_1, a_2, \dots, a_n in R such that $A \cong a_1 + a_2 + \dots + a_n$.

LEMMA 2. Assume that 2 is a unit in R. If B and C are nonsingular

Presented to the Society, September 2, 1955; received by the editors June 9, 1955.

symmetric matrices over R, if a is an element of R, and if $a \dotplus B \cong a \dotplus C$, then $B \cong C$.

The first of these lemmas is proved in precisely the same manner as the first part of Theorem 1 of [1].

The proof of the second lemma is similar to the proof of Theorem 8 of [3]. Let

$$T = \begin{bmatrix} t_0 & t_1 \\ t_2 & T_0 \end{bmatrix}$$

be a unimodular matrix such that $T^{T}(a + B)T = a + C$, where t_0 is an element of R and t_1 , t_2 , and T_0 are of the appropriate dimensions. Then

(1)
$$t_{0}^{2}a + t_{2}^{T}Bt_{2} = a, \\ t_{0}at_{1} + t_{2}^{T}BT_{0} = 0, \\ t_{1}^{T}at_{1} + T_{0}^{T}BT_{0} = C.$$

We can choose the correct sign in $t_0 \pm 1$ so that the resulting element, u, of R is a unit. For, if t_0+1 and t_0-1 are both nonunits, then $(t_0+1)-(t_0-1)=2$ is a nonunit.

If we now set $S = T_0 - t_2 t_1 u^{-1}$, we can use (1) to show that $S^T B S = C$. Since $|T|^2 a |B| = a |C|$, and |T| is a unit, we have V(|B|) = V(|C|). Hence $V(|S|^2) = 0$, so $|S|^2$ and therefore |S| is a unit in R. Thus S is unimodular, and this completes the proof of Lemma 2 and the theorem.

REFERENCES

- 1. W. H. Durfee, Congruence of quadratic forms over valuation rings, Duke Math. J. vol. 11 (1944) pp. 687-697.
- 2. B. W. Jones, An extension of a theorem of Witt, Bull. Amer. Math. Soc. vol. 48 (1942) pp. 133-142.
- 3. _____, The arithmetic theory of quadratic forms, Carus Monograph No. 10,
- 4. G. Pall, Hermitian quadratic forms in a quasi-field, Bull. Amer. Math. Soc. vol. 51 (1945) pp. 889-893.
- 5. E. Witt, Theorie der quadratischen Formen in beliebigen Körpern, J. für Math. vol. 176 (1937) pp. 31-48.

University of Notre Dame