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with powers of pm+3, • ■ ■ , and "finally to Nx(s)/JJ^ZÎ'1 p%+} with

powers of pn. The number we seek is Nx(s)/Y\j-T Pm+h

For the case of a k of the form (2) with n = m, an infinite set of

primitive fe-nondeficients is easy to find—for example, the set of all

numbers Nx = qx- H"=i P"' where the qx are sufficiently large to insure

primitiveness and the pi, a< stem from k.

Reference

1. Harold N. Shapiro, Note on a theorem of Dickson, Bull. Amer. Math. Soc. vol. 55

(1949) pp. 450-452.

University of Michigan

A CLASS OF SIMPLE MOUFANG LOOPS

LOWELL J. PAIGE

1. Introduction. A Moufang loop is a loop that satisfies the associa-

tive identities

(M)       xyzx=x(yz-x); x(y• xz) = (xy• x)z; (zx-y)x=z(x-yx).

The only known examples of simple Moufang loops are the simple

groups. In the present paper we will prove the following theorem.

Theorem. Let R be a simple alternative, not-associative, ring pos-

sessing an idempotent not its unit element. Let L be the loop of all regular

elements of R and let Z be the center of L. Then either L/Z is a simple,

not-associative, Moufang loop or L/Z contains a simple, not-associative,

Moufang subloop M which is a normal subloop of index 2.

As we shall see in the course of our proof, the present theorem is a

nonassociative analogue of the well known results on the special

projective group PSL(n, K) (see [4, p. 44]).

In §5, we shall prove that the Cayley-Dickson numbers of norm 1

over the real field R* (modulo their center) are simple and indicate

how this is the best possible result.

Our results will yield finite, not-associative, simple Moufang loops

whose possible orders are (27n —23n) and 2~l(pln—p3n) if p is an odd

prime. Thus we obtain a simple, not-associative, Moufang loop of

order 120.

Although we have tried to make this paper reasonably self con-

tained, some of the results by Brück (2) on Moufang loops will be

used without reference.
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2. Simple alternative rings. Let F be a field and consider the set R

of all matrices

c;>
where a, bEF and a and ß are 3-dimensional coordinate vectors

(xi, x2, x3) over F.

We may construct an alternative ring R (i.e., x(xy) = (xx)y,

(yx)x=y(xx)) from these matrices by first defining equality and

addition to be ordinary matrix equality and addition with vector

equality and addition for the vector elements of the matrices.

For a = (ai, a2, a3) and ß = (bi, b2, b3) denote by a o ß and a Xß the

scalar and vector products aibi+a2b2-\-a3b3 and [a2b3 — a3b2, a3bi — aib3,

aib2—a2bi].

Following Max Zorn, we now define multiplication in R by

<2-" C¡)C ;h,
ac + a o S        ay + ad — ß X à"\

c + bÔ + aXy ß oy + bd     J

Although not explicitly in this form, Albert (1) has shown that

every simple alternative ring containing an idempotent not its unit

element is either associative or a ring R as defined above. It should

be noted that these rings are the Cayley algebras that are not division

algebras.

3. Moufang loops in simple alternative rings. The only rings R

that we will consider in §§3 and 4 will be the simple alternative rings

constructed in §2.

A regular element of a ring R is an element x for which elements y

and z exist such that xy = zx = 1.

Lemma 3.1. An element

c;)
of the ring Ris a regular element if and only ifab—aoß^O.

Proof. We note

(a   a\/   b —a\      /   b —a\/a   a\      /ab — aoß 0       \

ß    b)\-ß     a)~\-ß     a)\ß   b)~\       0 ab-aoß)

and the proof is immediate.
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Lemma 3.2. The mapping T, defined by

(a   a\
) T = ab - a o ß,

ß    b)

is a homomorphism of the multiplicative groupoid of R upon F.

Proof. From the definition of multiplication (2.1), we compute

iac + a o 5) (ß o y + bd) - ißc + bô + a X y)oiay + ad - ß X 5)

= abcd + iaoo)ißoy) - aby o 5 - cdaoß+ (a X y)o(jS X ¿);

and recalling that (a X7)o(ß X S) = (a o ß) (7 o 5) — (a o 5) iß o 7), the

right member of (3.1) reduces to (a&— a o/3)(cd — 7 o S). This com-

pletes the proof.

R is an alternative ring and it follows from the work of Brück and

Kleinfeld [3, Lemma 2.2] that the elements of R satisfy the Moufang

identities (M). Moreover, every two elements of a Moufang loop

generate a subgroup and we can combine these observations with

Lemmas 3.1 and 3.2 to obtain the following theorem.

Theorem 3.3. The set of all regular elements of the ring Ris a Mou-

fang loop L. The set of all regular elements of R such that ab—aoß = l

is a normal Moufang subloop M of L.

An element c of a loop L is in the center Zl of L if and only if

cx = xc, c(xy) = (cx)y, (xc)y = x(cy), (xy)c=x(yc) for all x, yG¿.

Lemma 3.4. The element

CD
is in the center Z of the loop L of regular elements of the ring R if and

only if a = b¿¿0, a=j3 = 0.

Proof. If

CO
is in the center Z of L, the equality

/a   a\ /s    0\ _ /s    0\ /a   a\

\ß    b)\0    l)~\0    t)\ß    b)'

with st?*0, S7±t, implies that

(3.3) ait - 5) = ßis - Z) = 0.
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Except when F is a field of 2 elements, (3.3) implies that a=ß=0.

The exception may be removed by a more detailed analysis.

The equality

/a   0\/l    0\      /l   0\/a   0\

\0    b)\ß   l)~\ß   í)\0   b)

implies that (a—b)ß = 0 or a = b. The proof of the sufficiency is a

straight-forward verification.

Corollary. The center ZM of the subloop M (Theorem 3.3) is a group

of order 2 if the characteristic of F is not 2 ; otherwise ZM = 1 ■

The proof of the corollary, except for the fields of 2 or 3 elements,

merely requires that we take s = t~l in the first argument and a = b~l

in the second. We then observe that x2 = l has two solutions except

when F has characteristic 2. Again the exceptional fields of 2 or 3

elements yield to special analysis.

Lemma 3.5. The Moufang loop M is not a group.

Proof. We compute,

r/i   (o, o, i)\ /i   (i, o, o)\-i /     o        (o, i, o)\

L\o      i    / Vo      i    /J \(o, -1,0)       i    /
/ 0 (1, 1, 1)\

V(-l, -1, 1) 2      )'

/l   (o, o, i)\r/i   (i,o, o)\/     o        (o, i, o)\-i

Vo      i    /L\o      i    A(o,-l.o)       i    /J
/    1      (1.1-1)\

V(-i,o, i)       i    )'

In the case that the field F is the Galois field GF(pn), we see that

the order of R is pBn. We may compute the order of the subloop M by

observing that the first row of the element

CD
may be chosen in (pin — 1) ways and then choosing b in pn ways with

the subsequent restriction of the choices of ß to p2n. Thus the order

of M is (pin — l)p%n and the order of M/ZM (by the corollary to

Lemma 3.4) is 2~1(pin — l)pZn if p is an odd prime; in the case of

GF(2n) the order of M/ZM is (27n — 23n). We see at the same time

that the order of L is (pin — l)pin(pn — l) and the order of L/Z is
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ipin — l)p3n; thus M/Zm is isomorphic to a subloop of index 2 in the

loop L/Z for p an odd prime.

4. Simple Moufang loops. In this section M will be the Moufang

loop of the ring R consisting of all elements

CO
such that ab— a o j3 = l. We wish to prove the following theorem.

Theorem 4.1. // ZM is the center of the loop M, the loop M/ZM is a

simple, not-associative, Moufang loop.

The theorem in the introduction follows from Theorem 4.1 and §2,

since L/Z=\M/Mf\Z (to within an isomorphism) and M/\Z = ZM

from Lemma 3.4 and corollary. L/Z=M/M'f\Z if and only if

L = MZ and this will be true if the field F is closed under the "square

root operation."

For the sake of simplicity we shall formulate the proof of Theorem

4.1 as a sequence of lemmas. Rather than operate modulo the center

of M we shall consider all normal subloops N of M in these lemmas to

contain Zm properly.

We define permutations i?(x) and Z(x) for any loop L by the equa-

tions
aRix) = ax,       aLix) = xa, for all a G L

and associate with the loop L the group G generated by all the per-

mutations i?(x) and Z,(x). The inner mapping group I* of a loop L is

defined to be the set of all elements UGG, such that lt7=l. It is

well known that /* is generated by the permutations

Tix) = *(*)£(*)-*;        Rix, y) = Rix)Riy)Rixy)-1;

Lix, y) = Lix)Liy)Liyx)-\

Moreover, A7, is a normal subloop of a loop L if and only if N-I*QN.

Two elements x, y (EL are said to be conjugate elements if there

exists a VÇ£I* such that xV=y. It is clear that if an element x is

contained in a normal subloop N, all conjugates of x are in N.

In any Moufang loop, xx~l = x~1x = l and i?(x)_1=i?(x_1)> Z-(x)-1

= L(x_1). Since any two elements of a Moufang loop generate a sub-

group, the associative law will apply in most of our computations.

With this word of caution and the observation that

/a   a\~l      /   b — a\

\ß   b)      " \-ß     a)

for elements of M we begin our proof of Theorem 4.1.
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Lemma 4.2. The elements

C i)and G O-

for all nonzero a and ß, are conjugate elements in M and generate all

elements of the form

CO-
Proof. We have the following equations, arising from the con-

sideration of conjugate elements of the form zT(x) :

(0   a\/l    a\/    0    -a\      (1    0\

, o)(o  i)U     «H  i>

For any two linearly independent vectors a and a\, there always

exists a vector ß such that ß oa= — 1, ß o ai= — 1. We conclude

from (4.1) and (4.2) that

c ;) - c D
are conjugate. If a and ai are linearly dependent we choose a2 linearly

independent of a and cm and prove that the elements involving a and

«i are conjugate in two steps.

If we consider the equations similar to (4.1) and (4.2) that are ob-

tained by interchanging the roles played by a and ß we see that all

elements

CD
are conjugate and using (4.2) are conjugate to elements of the form

CO-
Next, we have

cxk;)
if a o ß ~0 and our proof is complete.
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Lemma 4.3. The elements

CD
of M generate M/Zu.

Proof. For any (noncenter) element

CÍ)
of M we will show that it is always possible to find two elements such

that
/l   a\n  y\ _ /      1 + a o S     a + y - ß X Ô\ _ /A   a*\

\ß   l/Vs   1/      \ß + S + a X 7      0 07 + 1    )~\ß* B/'

If (4.3) is to be satisfied, we are led to the equations

(4.4) l+aoi=i4;

(4.5) l+ßoy = B;

(4.6) ß + 5 + aXy = ß*;

(4.7) a + y - ß X 5 = a*.

Solving (4.6) for S and substituting in (4.7) we have a*=a-\-y

-ßXiß*-ß-aXy)=a+y-ßXß*+ßXiaXy)=a + y-ßXß*

+aißoy)-yiaoß)=a+y-ßXß*+aiB-l)=y-ßXß*+Ba.Thus,

y=a*+ßXß*-Ba and similarly Ô =ß*-aXa*-Aß.

Using (4.6), we see that a o ß*=a o iß+5+aXy) =a o 5 and similar-

ly ßoa*=ßo y. Substituting these results in (4.4) and (4.5), we arrive

at the three equations

aoß* = A - 1,        ßoa* = B-l    and    a o 0 = 0.

These equations always have a solution. Clearly, either a* or ß* is

not zero for otherwise A =B= +1 and we have nothing to prove.

Assume a*5¿0; we pick a ß such that ßa* = B — 1 and linearly inde-

pendent of ß*. The remaining equations are then solved for a. It is

a simple verification that (4.4), (4.5), (4.6) and (4.7) are now satisfied

and our proof is complete.

In view of Lemmas 4.2 and 4.3, we continue our proof of Theorem

4.1 by showing that every normal subloop N of M properly contain-

ing Zm contains an element of the form

CO-
with a not zero.
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Lemma 4.4. Let N be a normal subloop of M containing an element

c:>
with ao ß^O, — 1. Then N contains a nonunit element of the form

C, :)•
Proof. Assume a j¿ ±1. If we let

\0      J' \ßi  0/ Wi    0   /

and a straight-forward calculation reveals

(aa)R(x,y) = ( a a).

\ß   b) \(aoß)(a-2-l)ßi-ar2ßbJ

Hence, N contains an element

U b)'
with ßs9^ß. The inverse of this element is in N and consequently the

element

/a    a\/    b     -a\ _ /        1 ßXß2\

\ß   b)\-ß2      a)~ \b(ß-ßu       1    )

is in N.

If a = +1 and ¿»5^+1, an interchange of the roles played by a and

b, a and ß, verifies the lemma.

If a=b = l we are through. If a = b= — 1, merely square the element

(except when F has characteristic 2, in which case we are already

through).

If a= —ô = l, we note that when aoj8i = 0,

/l    0\ /l     a\ /    1    0\ _ /     1 a - 2/3i X 0\

Vft  l)\ß -l/\-^i   1/"U + ̂  -1/*

The inverse of this element is in N and consequently

/l      a\/       -1 -a + 2ßiXß\^/  1    0\

\(3 -lA-201-,8 1 /      \2/3i  1/

is in N. A similar argument holds for a = — b = — 1, and neither argu-

ment is necessary for fields of characteristic 2.
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Lemma 4.5. Let N be a normal subloop of M containing an element

c;>
with a o ß = — 1. Then N contains a nonunit element of the form

a :)•
Proof. Since ab = 0, we assume a = 0 and choose ßi 9*ß to compute

/0   a\/0   cA/0   a\/    0-cA_/-l     -20X0A

\ß    b)\ß! O/\0    b)\-ßi    0/~Wi -1     /

as an element of N. The square of this element completes the proof

of the lemma for fields of characteristic different from 2.

For fields of characteristic 2, let ßi^ß, and the element

/b    a\ /b    a\ /0    a\ /0    a\ = /     1        b2iß, X ß)\

\ß    0/ \0i  0/ \ß    b) \ßi   b)~ \ß! + ß 1        )

is in N.

Lemma 4.6. Let N be a normal subloop of M containing the noncenter

element

o
Then N contains a nonunit element of the form

U i)'
Proof. For a^O and j3»-5=0 with /3i?=/32, the elements

(0   a\/a   a\/    0    -a\ _ /   a~l      0\

ßi 0/ \ß or1) \-ßi      o)~\ßi-ß  a)

(î = 1, 2) are in N. Thus the element

/a-1     0\ /       a °\ = (     1        (0i - 0) X C82 - ß)\

\ßi-ß  a/K-ißt-ß) a-1)     \aißi-ß2) 1 /

is in N.

If /3?=0, a dual argument completes this case.

For a =0 = 0, the element

/l    aA/a   0 \    /l        ""A _/        a (a-a-^aA

\0!   1 Ao or1)   V-05 /      \(a - a"1)/?! a-1      /

is in N and the proof proceeds as above.
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Lemma 4.7. Every normal subloop N of M containing ZM properly

contains a nonunit element of the form

CD-CO-
Proof. From the three previous lemmas we know that N contains

an element

CO
with a or ß^O. We assume a^O and choose ftoa = l, computing as

elements of N;

/l    0\ /l    a\ /    1    0\ _ /    0        a + 2ß X ßi\

V/îi   l/V/3    1)\-ßi   1/      \ß - ßi 2 )'

/    0        a + 2/3 X |3i\ /l    «\ _ /     ° « + 0 X 0i\

\9-0i 2 y VjS    1/      \3/S-j8i 1        /'

/     0 a + ßXßi\/     0 a + /3XjSA

W-jSi 0        / \3/3 - /3i 1        /

/       0 -a-ßXßi\ = /-l    2(a + ßXßi)\

\-3ß + ß! 0 /      \0 -1 /'

The square of this last element completes the proof in the case that

the field F is not of characteristic 2. For fields of characteristic 2, we

have

( '   °X °   1( '   Vf °)Vjs — ßi i/\ß-ßi o/Kß-ßi i/    \o  i/

contained in iV.

The dual argument for (3^0 completes the proof of the lemma.

The only concluding remarks necessary in the proof of Theorem 4.1

are to observe that the elements used in the proof of Lemma 3.4 lie

in different cosets modulo ZM so that M/ZM is not a group.

5. Simple Moufang loops of Cayley-Dickson division algebras. In

the previous sections we have considered the simple alternative rings

that are not division algebras of order 8 over their center (so-called

Cayley-Dickson algebras). In the case of division algebras our results

cannot be as complete since we shall show that there do exist exam-

ples in which the elements of "norm 1 " modulo their center are not

simple Moufang loops.



1956] A CLASS OF SIMPLE MOUFANG LOOPS 481

We consider the Cayley-Dickson division algebras A over the real

field R* and let a basis for A be given by 1, ft, • • • , ft. We recall that

1, ft-, ft, ek, for ii,j, ¿) = (1, 2, 4), (2, 3, 5), (3, 4, 6), (4, 5, 7), (5, 6, 1),
(6, 7, 2), (7, 1, 3) form a basis for ordinary quaternion subalgebras;

i.e., e2=e2=Ci=—1 and ftft = — ftft = ft, ftft = — e*ft = ft, ftft=— ftft

=ft. If a=a0+aift-|- • • • -r-a7ft-, we define the conjugate of a by

a = a0 — aift— • • • — a7ft and the norm of a by N(a)=aä = äa

= ao+a?+ • • • +a2. Every element a^A satisfies an equation

x2 —2aoX + Ar(a) =0 and consequently is contained in a quaternion

subalgebra of A.

We now prove the following theorem.

Theorem 5.1. Let A be the Cayley-Dickson division algebra over the

real field R*. Let M be the loop of all elements of norm 1 with center ZM-

Then the loop M/Zm is a simple Moufang loop.

Proof. The center Zm consists of the elements ± 1 and again we

will consider only those subloops of M properly containing ZM- Thus,

if N is any normal subloop of M under consideration, N contains an

element x not in the center of A and x will lie in a quaternion sub-

algebra Qix).

It is well known [6, p. 215] that the quaternions of norm 1 mod Z

are a simple group and consequently N must contain all the elements

of Q(x) of norm 1. We choose a basis for Q(x), 1, xi, x2, x3, where each

element is of norm 1 and hence in N. For any y(E.M and not in Q(x)

there is a basis element x< that does not commute with y for otherwise

we would have a commutative division algebra of order 4 over R*.

Thus Xi and y lie in another quaternion subalgebra and again apply-

ing our result on quaternions we see that y G A7. Our proof is now com-

plete since N contains all elements of norm 1.

The following example will show that Theorem 5.1 is perhaps the

only result of interest in the case of division algebras.

Analogous to an example of Dieudonné's for quaternions [5, p. 34],

we define a Cayley-Dickson division algebra over the field K of all

formal power series 2^2t=n a^k with real coefficients and ra either posi-

tive, negative or zero. The coefficients of the basis elements of the

algebra for elements of norm 1 are power series of the form 2"= o Qktk.

We take as a subgroup N of the loop M of all elements of norm 1

those elements of the form 1 +Zx, where the coefficients of the basis

elements in the element x of A are again of the form 5Z*°-o akth. Since

the inner mapping group I* leaves the element 1 fixed, it is quite

clear that (l+tx)T(a) = l+txT(a), (l+tx)R(a, b) = l+txR(a, b),

(l+Zx)L(a, b) = l+ZxZ(a, b); moreover, the elements xT(a), xR(a, b),
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xL(a, b) have no negative powers of t in their coefficients. Thus N is

a normal subloop of M. Hence M/Zm is not a simple Moufang loop.

Although Theorem 5.1 can be extended to fields other than the real

field R*, the example given above indicates that such an extension is

probably without interest.
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