
ON THE CONFORMAL MAPPING OF NEARLY-
CIRCULAR DOMAINS1

ZEEV NEHARI AND VIKRAMADITYA SINGH

Let D be a simply-connected domain in the complex z-plane

bounded by a smooth Jordan curve C, and denote by F(z) = F(z, £) the

analytic function which maps D conformally onto the unit disk and

satisfies the additional conditions F(£) =0, F'(%) >0. It is well known

[l; 4] that F(z) and the Szegö kernel function K(z, £) of D are con-

nected by the relation

4w2K2(z, {) = F'(z)F'(£).

Accordingly, the conformai mapping of D onto the unit disk can be

carried out if the function K(z, £) is known.

The only property of K(z, £) which we shall use is the identity [l ]

(1) /(£)=   f [K(z, t)]*f(z)ds2

which holds for all functions/(z) of L2(D), that is, functions which

are regular in D and for which fc\f(z)\ 2ds< «>. K(z, £) is itself in

L2(D) and it is, moreover, the only function of L2(D) with the repro-

ducing property (1). The dependence of K(z, £) on £ is shown by the

identity K(%, z) = [K(z, £)]* which is easily derived from (1).

The object of this paper is the derivation of an approximation

formula for K(z, £) in the case in which D is a nearly circular domain

whose boundary has the equation r = l+tp(d) in polar coordinates,

where e is a small positive quantity. While it is not difficult to obtain

such a formula with the help of devices of the type used in the deriva-

tion of Hadamard's formula for the variation of the Green's function

[l; 2], the formula to be derived in this paper has the advantage of

permitting the estimation of the maximum error committed in replac-

ing K(z, £) by its approximation.

The problem of estimating the error in approximation formulas for

the conformai mapping of nearly-circular regions has been treated
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by a number of writers, notably Warschawski [5, and literature

quoted there], whose work is based on the consideration of certain

integral equations. The methods of the present paper, which utilize

the properties of the Szegö kernel function, represent a different

approach to this problem.

Our main result is

Theorem I. Let D be a domain bounded by a Jordan curve C with the

equation

(2) r = 1+ ep(e), 0 è 6 ^ 2ir,

where p(B) and its derivative p'(d) are continuous, p(9)>0, p(2w) =p(0),

| p(9) | I M, | p'(6) | á M', and eis a small positive quantity. If K(z, £)

denotes the Szegö kernel of D and \z\ ^r¡, |£| ^v, where n is such that

(3) ill- (2ey2(M(M + M'))1M,

then

(4)       ^c-¿/.(,-ay-^ + ̂ e   »-'*»

where

(5) \R(z,Ç)\2^p(\z\)p(\ï\),

and

(2M + M')2
p(v) = 1—f- V*) l(2tt(1 - rt2) 1(1 - r,Y - <ie2M(M + M')

W )

+

4M2

[1 -r,(l+eM)]2) '

For z=£=0, we have the particularly simple estimate

1
(6) 12(0, 0) ^ — (M2 + M'2).

2ir

We remark that the assumption p(d)>0 is no restriction, since any

curve which is near the unit circumference can be trivially trans-

formed into one for which this assumption holds.

For the proof of Theorem I we shall need the following two lemmas:

Lemma I. // T(z, £) is defined by

ds

br*Jc (z-lW-t*)
(7) T(z, {) =— f-—     —, z,kED,

iir2 Jc (z-;w
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then

(8) r& ö = m, ö,

<z«d

(9) I r(z, e - k(z, i) |2 = [r(z, z) - K(z, z)] [r({, 8 - a«, 8].

Proof. By the residue theorem,

| a \2K(z, z) + 2 Re {aK(z, Q} + K& {)

(10) — f [a*A(/, z) + K(t, Ö ] 1"-^- +--1 d/,
2iri Jc U — z       / — £J

where a is an arbitrary constant. In view of (1), the left-hand side of

(10) is equal to

f | a*K(t, z) + K(t, © \2ds.
Jo

Applying (7) and the Schwarz inequality, we obtain

| a \2K(z, z) + 2Re {aK(z, Q} + K& 8

= | a \2T(z, z) + 2 Re {«r(z, {)} + r({, Q,

whence (8) and the discriminant inequality (9).

Lemma II. If C, r, and p(6) have the same meaning as in Theorem I,

then

-f--rf*r4ir2Jc  r2      Uc   J

«2 r r2r     dö    ir2'     /1    i\  i

s^U «s)7+t/„ «»t+w'-
iii)

Proof. It follows from (2) that

pd5_ /■" i /   | *,P'i<fi)\1»d0 ^ r2T i /     e*p'*(ß)\de

e2 r2* p'2(e)
/.Z« d0 e2     ÇIT    p^

o     1 + ep(6)       2 J0        r3

J'2' Ç2* p2(B) e2   f5
P(6)d$ + e2 I      ^—^d0 + — |

o J o        r 2 J o

\    l+ep(ß)       2 J0        r3

.i* '2* p2(d)       i2 r2r p'2(d)

p{V)OV -+■ i'  i

and
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-[X4'-[n-^r4*

á — + —     p(e)de + — I    !-^- de.
2w      4ir2J0 Sir2 J 0        r

Combining these two inequalities, we obtain (11).

We now enter upon the proof of Theorem I. If |£| ^77, where v

satisfies the inequality (3), then it is easily confirmed that | £| (1 +eM)

<1. The point (£*)_1 is therefore outside D, and the function

(1— £*z)-1 belongs to L2(D). We may thus apply the identity (1).

This yields

1 C r ds.
__jV(,,er_

1- U|»     Jc        ' 1-É*z

and therefore

1 r , .        r ds.J|iM|*.f  TT_
(1-   \t\2)2-Jc' Jc    I 1 - í*3 |2

/ds,

c   I 1 — £*z |2

If T(z, £) is the function defined in (7), it thus follows from (8) that

0 g rft, ö - ir(¿, ö

(i2) < j- r *_r<i- i«h- r, & ,1-
If we set £ = 0, the right-hand side of (12) reduces to the quantity

estimated in Lemma II. In view of r^l, |p(0)| ÚM, \p'(B)\ ^M', we

may therefore conclude from (11) and (12) that

0 g r(0, 0) - K(0, 0) S — [M2 + M'2].
2ir

Because of the definition (7), this proves (6).

To prove Theorem I in the general case, we have to find a similar

estimate for the right-hand side of (12) if £^0. To this end, we intro-

duce the linear transformation

(13) w = (z - |)/(1 - £*z).



374 ZEEV NEHARI AND VIKRAMADITYA SINGH [June

Since (1 — £*z)2d«> = (l — |£| 2)dz, we have

ds¡ 1

Je 11 -£*z I2       1-  Ici2}/*"

and

ds, C 11 - £*z ds¡ 1 /*     ds„/djz Ç11 - f z ' ¿5* 1 /•

c |z-£|2 ~ Jo\   z-i       I 1 -£*z|2 ~ 1 - \t\*Jc w

where C is the curve into which C is transformed by (13). (12) is

therefore equivalent to

(14) o s r«,e - «S s j-»    {/   *- [ / fcp} .

The expression on the right-hand side of (14) is—except for the

factor (1 — |f 12)_1—identical with the quantity estimated in Lemma

II, with C replaced by C. If r = \+eq(d) is the polar equation of C„,

it thus follows from (14) and (11) that

0 g T(l 8 - *({, 8

(15) e2 V C de

4tt2(1-    £ 2)[£«*7 + tJ>,)(7 + ¿)4
Because of |£| (l+eAf)<l, the curve C surrounds a finite region

in the w-plane in the positive sense. Since C is in the annulus 1 <z^ 1

+ eM, C will be in 1 áwál+elf(l +1 £ | ) [l - | £| (1 +eM) J-». Hence,

Af(l + Ifl)
(16) 0 ^ ?(*)   -

1 -    £   (1 + ejf)

We next have to obtain an estimate for ç'(0). Elementary geometric

considerations show that eq'(d) =r tan a, where a is the angle between

the radius-vector from the origin to the point w = ei>[\+eq(d)\, and

the normal to C at the point w. Hence,

(17) e2q'2(d) = r2 tan2 a ^ r2 tan2 a0,

where ao = max |a| for O:Sj0<27r. To obtain an upper bound for a,

we have to express this angle in terms of geometric quantities related

to the z-plane. In view of (13), a straight line through w — 0 corre-

sponds to a circle through z = £ which is orthogonal to |z| =1. Since

the map (13) is conformai, a will thus be the angle between the nor-

mal to C—at a point z0, say—and the orthogonal circle to |z| =1

which passes through £ and z0. Such a circle has an equation
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$ + Kt

(18) Z = -— >
1  + !?Kt

where k is a constant such that \k\ =1, and t is a real parameter. If z

moves along this circle from £ to z0, / varies from 0 to a value h>\;

evidently, the circle intersects \z\ =1 for t = i. If we denote by ß

the angle between the normal to C at z0 and the radius-vector from

the origin to z = z0, and by 5 the angle between this radius-vector and

the orthogonal circle Co, then a will be the algebraic sum of ß and S.

To compute 5, we observe that

L Z Jz=z0
Co,

and therefore

(1 + É* d)(È + Kt)
-0 = arg

a

= arg {(«* + £*/)(£+ **)}

= arg {/(l + U I2) + (1 + *2) Re { ***} - ¿(<2 ~ 1) Im ( «*{)}.

Hence,

(¿2 - 1) Im { «*£}
(19) tan 5 =-p-¡-!-—j-r •

*(1 +  Ul2) + (1 + ¿2) Re { K*f}

Assuming that

(20) I * |< < L

and maximizing the right-hand side of (19) for all possible values of

arg { k }, we find that

IÚ.IK (,"-1)l£l
(t2(l -   I £ |2)2 -   |£|2(<2 - l)2)1'2

Setting, in accordance with (18),

»-{
/ =

we obtain

1 - £*z

|S|(|z|2-l)
tan 5    ^ —¡-n-

1   - ( \z-S \2   !-€•« 2"    Î '(  « * - l)*)1'1

or, in view of
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I (z - 0(1 - £**) |2

2(|s|  - |S|)2(1- U| |z|)2

=  |z|2(l- |e|)«-2|{|(l+ |i|2)|z|(|z|  -l)2

+ U|2(|z|2- I)2,

tan 5    g
(|z|2(i- |£|)4-2|£| |2|(i+ [£|2)(|z| -iyyi2

Since, by (2), r=\z\ £l + eM, this leads to

eM(\ + r)
(21) | tan 5 |   |

(r2(l - vy - 2e2M2rv(l + r,2))1'2'

where rj ̂  | £|. This estimate is valid if the expression under the radical

is positive, which is certainly the case if (3) is satisfied. If (3) holds,

the condition (20) will hold a fortiori.

The angle a—whose maximum appears in the inequality (17)—is

the algebraic sum of S and the angle /3 = arc tan {ep'(9)/r}, where

r = \z\ =l + ep(6). In view of (21), it follows therefore that

.        «■ + t/(A2 - B2y<2
tan a    |

1  - *t/(A2 -  52)1'2

where the abbreviations

c = eM'/r, T = eM(l + r),

A2 = r*(l - vy,       B2 = 2e2M2m(l + ,,2)

have been employed. Squaring, and using the inequality A(A2 — B2)112

^A2 — B2 (A >B, A >0), we obtain after some simplifications

(aA +t)2- a2B2 (aA + r)2
tan2 a | -|

(A - <tt)2 - B2      A2 - B2 - 2Act

Because of 0|t;<1, r7j<l, we have (1—17)2< 1 and n(\+r) =n+i)r

<2. Hence,

o-A + t = e[M'(l - i))2 + Mv(l + r)] g e(M' + 2M)

and

¿2  _  B2  _  2A<TT

= r[r(l - r,Y - 2e2r,M{M(l + r,2) + M'(\ ~ l)s(l + O} ]

^ r[(i - Vy - Ae2M(M + If)].

We may thus conclude from (17) that
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e2 / 1 1 \ e2q'2($)
— ( — +-)q'2(e) =g -í-^grtan2a
2 \ r        rv r

e2(2M + M')2

'   (1 - 1,)« - 4e2M(M + M') '

Combining this with (15) and (16), we finally arrive at the inequality

0 á r(£, £) - A(£, £)

(22) €2        f (2M + M')2 4M2 "|€2       r (2k

~zV)V(i-ny-2tt(1 - r,2) L(l - i,)* - ie2M(M + M')       [l - tj(1 + eM)]2_T

The right-hand side of (22) is identical with that of (5'), except

for the factor e2. Since, in view of (4) and (7), t2R(z, £)=A(z, £)

—T(z, £), the proof of Theorem I now follows from (5) and Lemma I.

We finally remark that Lemma II will also yield the estimate

1       2ir
(23) 0 g-g e2(M2 + M'2),

d       L

for the outer conformai radius d of the domain D [3 ], where L denotes

the length of the curve C. The outer conformai radius is defined by

the expansion

w = F(z) = — + ao + — + • • • (d > 0)
d z

of the function mapping the complement of D onto w>\. Since D

does not contain the point z = 0, it follows that

1 1    C        dz
— =-:    F(z)—,
d 2iri J c        z2

and thus

(24)

On the other hand,

and therefore [3 ]

fsff
d       2ir J r.

ds

d       2ir J c   r2

-hic F(z) '

1f'2ic J c
áá-| ds.

2ir «
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Combining this with (24), we obtain

1     2x     1  r ds i r
0 ^-^—1-2tt /   Ids.

d       L      2irJc   r2 I    Jc

Since fell it follows from Lemma II that the right-hand side is

bounded by e2(M2+M'2). This proves (23).
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