
GEODESIC INSTABILITY

L. W. GREEN1

1. It has long been realized (see, for example, Morse [l]2) that

topological transitivity of the geodesic flow on a Riemannian mani-

fold is implied by certain instability properties of the geodesies. If

all curvatures are nonpositive, the required instability is immediate.

However, when positive curvature is allowed, most of the results are

limited to two-dimensions (Morse and Hedlund [l], Hopf [l]).

Salenius has proved transitivity for a class of three-dimensional com-

pact manifolds, using essentially the same methods as Morse and

Hedlund. This method involves proving the instability property by

means of the dynamical situation. In the following we generalize to

arbitrary dimensions a previous result3 which showed that instability

follows from the geometry, in particular, from the assumption about

the nonexistence of conjugate points.

Let M be a complete, simply-connected, «-dimensional Rieman-

nian manifold of class CT (rïî4) with the property that no geodesic

of M contains two mutually conjugate points. Then any two points

of M may be joined by one and only one geodesic segment, and the

length of this segment will be called the distance between the points.

Let the geodesic rays (images of a half-open interval) g and h be

parametrized by means of arc-length: g(t), h(s), O^s, t< ». We say

that g and h diverge if lim<<00 g(t)h= » and lim,..,», h(s)g= »(where

g(t)h denotes the distance from the point g(t) to the set h). The geo-

desic rays emanating from a point P are said to be uniformly diver-

gent if, for a sequence s<—> » and rays h, gi with P as initial point,

lim infi h(si)gi< » implies lim¿ gi = h. Uniform divergence at P

clearly implies the divergence of any two geodesies intersecting at P,

but the converse is probably true only for two dimensions, where it

is an immediate consequence of the Jordan curve theorem.

If 7 is a bivector at the point P, K(P, y) will denote the Rie-

mannian curvature in the direction y. The principal theorem is

Theorem 1. // K(P, y)^ —A2, and no geodesic of M contains a
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pair of mutually conjugate points, then the geodesic rays from any point

are uniformly divergent.

The proof of Theorem 1 will be given in §§2 and 3. We devote the

remainder of this section to indicating some if its applications. M will

continue to denote a simply-connected manifold with no conjugate

points: G is a properly discontinuous group of isometries of M, and

M/G is the manifold obtained by identifying points congruent un-

der G.

Theorem 2. If G is abelian and R = M/G is compact, then through

every point of R there is a closed geodesic of the homotopy type associated

with each generator of G.

Proof. Let P be a point of R, P a point of M covering P, and T a

generator of G. The theorem asserts that there is a geodesic g through

P such that T(g) = £. Let f i be the geodesic ray with initial pointP

which contains T(P). From the compactness of R and the com-

mutativity of G it is easily seen (see Busemann [l, 9.7]) that the dis-

tance between Q and T(Q) is uniformly bounded for Q£Af. Hence

gi and T(gi) are geodesic rays which do not diverge. But these rays

have the point T(P) in common, so by Theorem 1, T(gi) must be con-

tained in gi. Taking g to be the extension of fi to a complete (infinite

in both directions) geodesic concludes the proof.

Busemann [2] has proved Theorem 2 in a more elementary fashion

and for a wider class of spaces. However, because uniform divergence

obtains in the spaces we consider, a stronger result is possible. Call

a unit vector periodic if the (unique) geodesic to which it is tangent

is periodic. Then we can prove

Theorem 3. Under the assumptions (and notation) of Theorem 2, the

periodic vectors at any point of R are dense in the set of all unit vectors

at that point.

Proof. Let u be a unit vector at the point P of R, and V a neigh-

borhood of u in the unit sphere of tangent vectors. It is sufficient to

consider the whole configuration in M, and to find a periodic vector

v in the corresponding neighborhood V of the sphere in the space

tangent at a point P which covers P. (By abuse of language, we call

a vector v on M periodic if the geodesic it determines is invariant un-

der some motion of G.) Let h be the geodesic ray in M determined

by w, and designate by K the set of points (excluding P) on all geo-

desic rays with initial point P and initial direction in V. K is open

and h(s), s>0, is contained in K. Because ü is interior to V, the uni-

form divergence property of the rays with initial point P implies
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that the distance from h(s) to M—K approaches infinity as 5 increases

without bound. Consequently, for some value of s, say s, that dis-

tance will exceed twice the diameter of R.

The copy of the fundamental domain of R which contains the

point h(s) must then lie entirely in K. The proof of the theorem is

completed by connecting P with the point congruent to it in that

domain by a geodesic. This geodesic clearly has a periodic initial

vector in V.

We now specialize the manifold M to be the interior of the unit

ball, Un, in «-dimensional Euclidean space, endowed with the metric

ds2 = 4f2(x)dxidxi/(l — XiXi)2,

where/(x) =/(*i, x2, • • • , x») is of class C4 and 0 <a^f(x) ¿b for all

x in Un and constant a, b. If G is a Fuchsian group, properly discon-

tinuous in Un, which leaves both the metric (1) and the hyperbolic

metric (/(x) = l) invariant, we shall denote the manifold M/G by

M(G). The geodesic flow of M(G) is defined to be the one-parameter

group of homeomorphisms of the tangent sphere bundle of M(G)

which takes a unit vector e after "time" t into et, the unit tangent

vector to the geodesic ray with initial point and direction e at a dis-

tance / from e (measured along the ray). The flow is said to be

topologically transitive if there exists a vector the totality of whose

images under the homeomorphisms is dense in the bundle. For the

details of setting up the manifold M(G) and the flow, we refer to

Utz [l, §§1-6]. (Notice that under our blanket assumption of no

conjugate points every geodesic of M is class .¡4.) These same sections

of Utz's paper also establish the preliminary results necessary for

carrying out the argument of Theorem 13.1 of Morse and Hedlund

[l ], provided the divergence of the geodesies in the covering space, M, is

known. In view of Theorem 1, we may therefore state

Theorem 4. If (i) G is of the first kind (ceases to be properly discon-

tinuous at every point of the boundary of Un), (ü) K(P, y) ^ —A2 for

A constant and every P, y in M(G), and (iii) no geodesic of M(G) has

a pair of mutually conjugate points, then the geodesic flow in M(G) is

topologically transitive.

This result improves that of Salenius [l ] in that M(G) is no longer

necessarily compact, the dimension is clearly arbitrary (although, as

he indicates, his argument will carry over to higher dimensions), and

the proof does not involve the Poincaré recurrence theorem.

2. Jacobi equations. The function K(x) will be said to satisfy con-
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dirions (C) if K(x) is continuous, K(x) = —A2 for — w <x< 00, and

the equation

(K) /'(*) + K(x)y(x) = 0

has no nontrivial solution with more than one zero. (Equation (K) is

the familiar Jacobi equation of geodesic variation for two-dimensional

manifolds.)

Lemma 1. There exists an xo>0 which depends on the conditions (C)

but not on the specific function K(x) satisfying these conditions, such

that, if y(x) is a solution of (K) with 3/(0) =0, y'(0) >0, then

I y'(x)/y(x) I   = 2,4, x = x0.

Proof. Set w(x)=;y'(x)/;y(x), for x>0. Then u(x) satisfies the

Riccati equation

(R) u'(x) + u2(x) + K(x) = 0.

Comparing with the equation

(R¿) w'(x) + w2(x) - A2 = 0,

we find by a standard argument (see, e.g., S) that if u(x) =w(x)>A

for an x>0 in the domain of definition of w(x), then u'(x)^w'(x).

Thus if m(xi) <w(xi) for any Xi, then u(x) ^w(x) for x^Xi, by inspec-

tion of the manner of crossing of the integral curves. In particular, if

w(x, a) is the solution of (RA) for which limI_0+ w(x, a) = + =°, a>0,

it is clear that u(a-\-e) <w(a+e), for suitably small positive e. Since

a may be made as small as desired, u(x) =w(x, 0) for all x>0. This

solution of (Rx) depends only on A, and limx,M w(x, 0)=A. Hence

we may conclude that u(x) ^2A for x = x0, where x0 depends only on

A. That u(x)> — A for x>0 follows from a similar argument and

the fact that u(x) is defined for all positive x (for details, see S). This

completes the proof of the lemma.

We remark that if y(x) is a solution of (K) which never vanishes

the conclusion of the lemma holds for all x (in fact, for A instead of

2A).
Consider the sequence of Jacobi equations

(K,-) yi'(x) + Ki(x)yi(x) = 0,

where each Ki satisfies conditions (C). Then if yt(0)=0, yi (0)>0,

Lemma 1 says that \y{ (x)/y,-(x)| =2^4 for x = Xo, where Xo is inde-

pendent of i. Assume now that limt<00 K{(x) =K(x) uniformly on

every compact interval, and let K(x) satisfy conditions (C). Then if
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y,(x) are solutions of (K,) with the same boundary conditions,

y,(x)—»y(x) uniformly on bounded intervals, where y(x) is the solu-

tion of (K) with the prescribed boundary conditions. Here by "bound-

ary conditions" we mean conditions imposed on the y<(x) and (or)

their derivatives at finite points. To extend this convergence to solu-

tions satisfying a special type of infinite boundary value is the pur-

pose of the following paragraphs.

Letyj(x), Wi(x, a) be solutions of (K¿) for which y,(0) =0 = Wi(a, a),

y I (0) = 1 =wt(0, a). Then for x>0

Wi(x, a) = Ti(x)  I    yi (s)ds,

and, as is well known (see, for example, E. Hopf [l]), lim0.„ Wi(x, a)

= Ui(x) exists, is a solution of (K<) which never vanishes, and may be

represented for x > 0 by the equation

/i 00

y i (s)ds.
x

Since w[ (0,1) <«/ (0) <w[ (0, — 1) for all i, there exists a subsequence

such that lim*-,«, u¡k(0)=u' exists. It is then easy to see that

lim*..«», Uik(x)=u(x) exists and is a solution of (K) satisfying the

boundary conditions w(0) = 1, m'(0)=w'. Moreover, w(x)>0 forx^O.

Lemma 2. If y i is the solution of (K¡) with y<(0) =0, yi (0) = 1, then
there exists no constant R and sequence x¿ such that lim< x,= » but

y,(x,) ^ R for all i.

Proof. Choose x0>0 and set inf¿ {y,(x0)} —c. Since limj y¿(x)

=y(x), c>0. Moreover, since lim*-.,«, uik(x) =w(x)>0, it is possible

to choose 6>0 such that the (never-vanishing) solutions of (Kit)

defined by hik(x)=buik(x) satisfy hik(xo)^c^yik(xo). The Sturmian

separation theorem then implies that hik(x) <yik(x) for x>xo. The

numbers aik = hik(Xik)/yik(xik) are bounded so that, using the hypoth-

esis, we may find a subsequence of \ik\ (to which we confine atten-

tion in the following, and therefore designate with the single subscript

m) such that limm am = a and limm ym(xm)=i?'. Form the solution

zm(x) of (Kn) by setting

zm(x) = hm(x) — aym(x).

Then limm zm(xm)=0. But calculation of the Wronskian shows that

(2) y'm(x)zm(x) - z'm(x)ym(x) = zm(0) = b > 0.

Lemma 1 implies that y'm(x)/ym(x) and z'm(x)/zm(x) are uniformly
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bounded for sufficiently large x. It follows that y'm(xm) is a bounded

sequence. But dividing (2) by zm(xm) we get

y'm(xm)   —   ym(xn)Zm(Xm)/Zm(Xm)   =   b/zm(xm).

Since the left side is bounded while the right is not, we obtain the

contradiction which proves the lemma.

It is clear that the results of this section hold if, instead of requir-

ing that no solution vanish twice, we merely assume that there is an

€>0 (independent of i) such that any solution with a zero in ( —e, e)

has no other zero.

Morse in [l] paraphrases his assumption of uniform instability as

the hypothesis that the first conjugate point of each finite point lies

"beyond" the point at infinity. Lemma 2 shows that this is implied

(and uniformly so) merely by assumptions (C). Setting all the K~i

equal, we have the result of S as a

Corollary. If y(x) is a solution of (K) with y(0) =0, y'(0) >0, then

lim^«, y(x) = ».

3. Proof of Theorem 1. Suppose the theorem false, that is, suppose

there is a point P in the manifold M described in §1 which is the

initial point of the geodesic rays gk, g, and h, and that gk—>g^h, yet

there exists a sequence sk—> oo such that

limt inf gkh(sk) < «.

It is clear that g(l) ^h(-i) (where negative values of the arc-length

parametrize the oppositely directed ray), so that we may assume

that a subsequence of the gk's has already been chosen in such a

manner that neither h( — 1) nor h(i) is a limit point of {g¡t(l)|. If S

denotes the unit (geodesic) sphere with center P, it is then possible

to set up polar coordinates (r, y) in M, where y = (y1, • • • , y"-1) are

coordinates on S valid in S—h( — 1). The line element of the space

then takes the form (repeated Greek letters will always be summed

from 1 to n — 1)

ds2 = dr2 + aaß(r, y)dyadf.

In these coordinates the equations of the geodesic rays may be

taken as h(r) = (r, y0), gk(r) = (r, yk). Let h(t) = (rk(t), yk(t)) be a geo-

desic segment whose length affords a minimum to the distance from

(rk(0), yk(0) = (sk, yo) =h(sk) to gk, parametrized so that 0 = Z = 1. Set

4(Z) = (1, yk(t)) ; that is, Ik is the projection of lk on 5. If x* is the arc

length along lk measured from h(l), then tk = tk(xk) is a legitimate

change of parameter of h and h. Setting zk(xk) =yk(k(xk)), Rk(xk)
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= rk(tk(xk)), we may therefore designate these lines by the equations

h(Xk) = (Rk(xk), zk(Xk)) and lk(xk) = (1, zk(xk)). Here the parameter xk

has the domain [0, Lk], where Lk is the length of lk. Since h(l) is not

a limit point of g*(l), Ä(l) has a neighborhood of geodesic radius La

which contains no point gk(l) for sufficiently large k. Then Lh = Z0>0

for large k, so we may drop the subscript from x* if we confine it to the

interval [0, L0]. Because of the choice of parameter,

a   ß

aaß(l, Zk(x))zkZk = 1,

where the dot denotes differentiation with respect to x and only re-

peated Greek letters are summed. Since the closed ball 2 of radius La

about h(l) is compact and does not contain h( — 1), there exists a posi-

tive constant B such that

aaB(l, y)uau^ ^ B2uaW

for all y in 2f"\S and all u. In particular, setting

Ck(x)  = Zk(x)Zk(x),

1 Ú B ZkZk = B ck(x),

so that c\(x) =B-2>0 for all x in [0, Z,0], and B does not depend on k.

If Lk=gh(sk), that is, L& is the length of lk, we have that

£* =   I      i^i + aaß(Rk, zk)zkzk)    dx ^ {««¿(.R*, z*)z*z*)    <fx.
*J 0 «J 0

The denial of the theorem is the statement that lim infjt Lk is finite.

An application of Fatou's lemma then implies that

lim inf {aaß(Rk(x), zk(x))zlzk}
k

is integrable over the interval [0, La]. Hence there is an x£(0, L0)

and a subsequence, which we shall denote with subscript i, such that

(3) {aaß(Ri(x), Zi(x))z"i(x)zßi(x)}V* è D

for all i and a suitable constant D.

Our efforts will now be directed to proving that (3) leads to a con-

tradiction. Let

Zi(r) = aaß(r, z,(x))zí(x)zí(x).
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Then Z,(0)=0, and, denoting differentiation with respect to r by

primes,

Z{(0) = lim r    {aaßZiZi\      = {¿¿¿»}      = d(x) = B   .
r->0

In these polar coordinates the Christoffel symbols and the com-

ponents of the Riemann tensor in which we are interested are given

by

n 1   da
r«s = r„„0 = — rMO0-— aß,

2   or

and

A _ T
■K-nanß A anß *■ any* 8 n-

or

Differentiating Zi(r) twice, we find that

JM             1    í         .a.ß-.-1/2 dayS y s -1 aß

¿iV)   =   - \aapZiZi) -     ZiZi =   —Li   LanßZiZi,
2 dr

and

9>'l \ 7_1   d  r.      •"•*       7-3(r.     -'-V
Li\r)   —   — ¿i     - lan|3Z¿Z¿ — ¿i    [i-anSZiZii

dr

—1 a 5 —1 7    .ff.£ —3i .'.^1 2

= ^i   K-nanßZiZi ¿ti   1 eny*-ß   nZiZi       Zr,'     | l cnèZiZi ]   .

More concisely,

(Ji) Z'/ir) + [Ki(r) - 7\(r)]Z,(r) = 0,

where Ki(r) = Z4~~2i?nan/3Z?zf, the curvature of the orthogonal bivector

formed by the tangent to the geodesic (r, z¿(x)) and the vector

(¿i(x)). If we set va = YanßZi, Ti(r) may be written in a simple form:

T.- = Zi    \ZiYan,a    TßnSZiZi —   |T<míZiZ¿J   J

—4/22 i  a. 2-, 2—2 2

= Z,  {Z^,- - (»«£) } = FiZi   sin 6it

where F< is the length of (v') and 0,- is the angle this vector makes

with (¿i).

Now choose a subsequence of the integers, which will be denoted

by the subscript j, such that lim,..,» Zj(x) and lim,-..«, z,(x) both exist.

(This is possible because Sf^S is compact and the z's are unit vec-

tors.) Call these limits z and w, respectively. Setting K¡ = Kj — Tj,
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we have that lim^«, K¡(r)=K(r) uniformly for 0<£grgl/e, since

all the quantities involved are uniformly continuous in this range,

and depend continuously on (z) and (z). (e is any fixed positive con-

stant.) Moreover, K(r) may be defined for all r, and seen to be

bounded in a neighborhood of the origin, by considering the equation

(J) Z"(r) + K(r)Z(r) = 0,

where Z(r) =limj^x {aaß(r, z^zfzf} 1/2= {aaß(r, z)wawß}112. Similarly,

K¡(r) (although not necessarily K¡ and T¡ separately) are uniformly

bounded in any fixed neighborhood of the origin, by virtue of the

"in-the-large" definition of Z¡(r) and its behavior at r = 0.

The nonconjugacy hypothesis assures us that Z¡(r), Z(r) vanish

only for r = 0, so none of the equations (J;), (J) has a solution with

more than one zero.

Let yj(r)=Zi(r)/cj(x). Then y/(0) = l, and

yi(Ri(x)) = Z,(Ä,<*))AK*) ú BZ¿R¿*)) û BD,

by (3) and the definition of Z¡. If we could apply Lemma 2 to this

situation, we would have the desired contradiction. The only hypoth-

esis which is as yet unverified is the boundedness condition, and, be-

cause of the above remarks about K¡(r) on compact intervals and our

blanket assumption on the curvatures, it is sufficient to show that

the quantities Tj(r) are uniformly bounded for r sufficiently large.

First we notice that Tanß(r) are the coefficients of the second funda-

mental form of the geodesic hypersphere S(P, r) (center P and radius

r) at the point where the geodesic we consider pierces it. (We omit

the index /—what follows will be true uniformly in j.) This fact

results from a direct computation, which is carried out in, for exam-

ple, Cartan [l, p. 228]. Consider r«„pas the matrix of a symmetric

linear transformation in the (» —1) -dimensional vector space tangent

to S(P, r). We shall prove that these transformations, and, hence,

T(r), are bounded uniformly in r relative to the metric induced in

these vector spaces by (aaß). Since the matrices are symmetric, a

standard argument (for example, on the eigenvalues) shows that it is

sufficient to prove that the associated quadratic forms are bounded.

This has already been done by Rauch [l, p. 43, Lemma 2], but

because of the geometric significance it seems not altogether useless

to give a different, more geometric proof.

Lemma 3 (Rauch). There exists an ro such that, for r^ro, the second

fundamental forms Ta„ß(r)uauß are uniformly bounded.

Proof. Let (u) be any unit vector tangent to S(P, r), and consider
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the two-dimensional (local) Riemannian submanifold V2 obtained by

translating (u) parallel to itself along the geodesic g through P and

the point of tangency. The intersection of S(P, r) and V2 is a curve T

whose geodesic curvature kT (relative to V2) at the point Q where it

crosses g is precisely TanßWue. The arc of the geodesic (relative to the

metric induced in V2) circle C with center P and tangent to Y at Q

lies entirely on one side of V in the neighborhood of Q, since the dis-

tance from P to a point of T measured in Vt is at least as great as r.

Hence the curvature kc of C at Q satisfies the inequality kc = kv. Now if

ds2 = dr2 +G2(r, v)dv2 is the line element of Vt in geodesic coordinates

with g as base, we have that

kc=G-i(r,0)-G(r,0).
dr

Then

(4) k'c + kl + V = 0,

where V(r) is the intrinsic Gaussian curvature (= — G~ld2/dr2G) of

Vi. Notice that kc(r) is a solution of (4) which exists for all r>0;

moreover there are no points on g conjugate to P in V2, since, a

fortiori, g is a minimizing curve in the imbedding space. Finally,

V(r) = — A2, for when a F2 is formed by parallel displacement of a

vector along a geodesic, the Gaussian curvature along this curve

equals the Riemannian curvature of the tangent bivectors. (This is

the so-called "Lemma of Synge"; cf. Preissman [l].) Therefore we

conclude, by Lemma 1, that there exist numbers ro and To, which de-

pend only on A, such that, if r ^ ro, | kc(r) | = To. Hence kT = To for

r = ro. (The more specific comparison with the space of constant

curvature which is actually Rauch's Lemma may be obtained by a

more careful examination of Lemma 1.)

Because we have made no assumption about the convexity of the

spheres, we cannot conclude that kr is non-negative. Nor will the

above method give us a lower bound, even if we assume that the

Riemannian curvatures are bounded above by some positive quan-

tity, since the question of conjugate points in the comparison space

would then arise. Fortunately, no additional assumption is necessary.

Let P' be the point on g such that Q bisects the arc from P to P',

and let C be the geodesic circle in Vi with center P' which passes

through Q. We assert that, in the neighborhood of Q, T is between C

and C. For, shifting attention back to the entire manifold, the

spheres S(P, r) and S(P', r) have only the point Q in common (be-

cause of the uniqueness of geodesies) and C is clearly inside S(P', r).
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Hence — kr^kC'^T0 for r^ro, by the same reasoning used for kc.

This completes the proof of the lemma, and the theorem.

Theorem 1 is slightly less general than its two-dimensional ana-

logue (proved in 3). For in two dimensions it is necessary to assume

only that P is interior to the set of poles of M (a pole is a point con-

jugate to no other point), while in the above proof we have made use

of the fact that P', at an arbitrary distance from P, also was a pole.

However, an examination of the proof shows that only the fact that

P' had no conjugate point on the geodesic segment connecting it

with P was used, and this follows from the weaker assumption. Hence

we may state

Theorem 1'. // K(Q, y) = —A2 for some constant A and all Q, y of

M, and P is interior to the set of poles of M, then the geodesic rays from

P are uniformly divergent.
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