ON SEMI-GROUPS OF UNBOUNDED NORMAL OPERATORS

R. K. GETOOR¹

In this note we discuss the integral representation of a semi-group of unbounded normal operators. The result for a semi-group of bounded normal operators can be found in Sz. Nagy [4]. Recently A. Devinatz[1] obtained a similar result for semi-groups of unbounded self-adjoint operators. The following theorem is proved.

THEOREM. Let $\{N_t; t>0\}$ be a semi-group (i.e., $N_tN_s=N_{t+s}$) of normal operators on a Hilbert space 3°C. Let D_t be the domain of N_t (each D_t dense in 3°C) and let $D=\bigcap_{t>0} D_t$ then we suppose that N_tx is weakly continuous as a function of t (t>0) for each fixed $x\in D$. Then there exists a unique complex spectral resolution $K(\Lambda)$ whose support is contained in $\lambda_1 \ge 0$, $\lambda = \lambda_1 + i\lambda_2$, such that

(1)
$$N_t = \int_{\lambda_1 \ge 0} \lambda_1^t e^{i\lambda_2 t} K(d\lambda), \qquad t > 0.$$

PROOF. First recall that if N is a normal operator then N=AU=UA where U is unitary and A is self-adjoint and has the same domain as N. In fact if $K(\Lambda)$ is the spectral resolution of N then we can define A and U as follows,

(2)
$$A = \int |\lambda| K(d\lambda),$$

(3)
$$U = \int s(\lambda)K(d\lambda) \text{ where } s(\lambda) = \begin{cases} \lambda/|\lambda|, & \lambda \neq 0, \\ 1, & \lambda = 0. \end{cases}$$

Let us also note that if p is an integer then $(N^p)^* = (A^p U^p)^* = A^p U^{-p}$ and that $(N^*)^p = (A U^*)^p = A^p U^{-p}$, hence $(N^p)^* = (N^*)^p$.

We now prove a series of simple statements which taken together yield our theorem.

(a) If t and s are commensurable then $N_t N_s^* = N_s^* N_t$. This is a trivial consequence of the semi-group property of $\{N_t, t>0\}$ and the fact that $(N_t^*)^n = (N_t^n)^*$.

Presented to the Society, December 27, 1954; received by the editors June 3, 1955.

¹ This research was supported in part by the Office of Ordnance Research contract DA-36-034-ORD-1296RD.

- (b) If $x \in D$ then $N_t N_s^* x = N_s^* N_t x$ for all t, s > 0. First if $x \in D$ then $N_t x \in D$ and $N_t^* x \in D$ for all t > 0, since if $x \in D$ then $N_{t+s} x$ exists and $N_s N_t x = N_{t+s} x$. Thus $N_t x \in D_s$ for all s and hence is in D. To show $N_t^* x \in D$, let $t_0 > 0$ be fixed, then $N_s x \in D$ for all s > 0 as seen above, hence $N_{t_0}^* N_s x$ exists. (Domain of $N_{t_0}^*$ is D_{t_0} since N_{t_0} is normal.) Let $s = nt_0$, $n = 1, 2, \cdots$, then since s and t_0 are commensurable $N_{t_0}^* N_s x = N_s (N_{t_0}^* x)$ or $N_{t_0}^* x \in D_{nt_0}$ for $n = 1, 2 \cdots$. But by the semi-group property of N_t , t > 0, the D_t 's are a decreasing collection of sets and therefore $D = \bigcap_{t > 0} D_t = \lim_{t \to \infty} D_t = \lim_{n \to \infty} D_{nt_0}$ since $t_0 > 0$. Thus $N_{t_0}^* x \in D$.
- If t, s are given and $x \in D$ then $N_t N_s^* x$ and $N_s^* N_t x$ both exist. Let $t_n \rightarrow t$, t_n and s commensurable. A standard argument making use of the continuity property of $\{N_t, t>0\}$ shows that for a fixed $x \in D$ $(N_s^* N_t x, y) = (N_t N_s^* x, y)$ for all $y \in D_s$, but D_s is dense in \mathcal{X} and hence $N_s^* N_t x = N_t N_s^* x$.
- (c) If we define $A_t = N_{t/2}^* N_{t/2}$, t > 0, then $\{A_t, t > 0\}$ is a semi-group of self-adjoint operators such that

(4)
$$A_t = A_1^t = \int_0^\infty \lambda_1^t dE(\lambda_1), \qquad t > 0.$$

It is clear from the definition that each A_t is a positive self-adjoint operator and moreover $A_t^2 = N_t^* N_t$. Since a positive self-adjoint operator has a unique positive self-adjoint square root it follows that A_t is the operator defined by (2) for N_t . Thus $D_{A_t} = D_t$ and $D = \bigcap_{t>0} D_{A_t}$.

If $x \in D$ then $A_t A_s x = N_{t/2}^* N_{t/2} N_{s/2}^* N_{s/2} x$ and this is defined since $N_t D \subset D$ and $N_t^* D \subset D$ for all t > 0. Moreover by (b)

$$A_{t}A_{s}x = N_{t/2}^{*}N_{s/2}^{*}N_{t/2}N_{s/2}x = N_{(t+s)/2}^{*}N_{(t+s)/2}x = A_{t+s}x,$$

since in general $N_{(t+s)/2}^* \supset N_{t/2}^* N_{s/2}^*$. Also

$$A_{t}A_{s}x = N_{s/2}^{*}N_{t/2}^{*}N_{s/2}N_{t/2}x$$

= $N_{s/2}^{*}N_{s/2}N_{t/2}^{*}N_{t/2}x = A_{s}A_{t}x$.

Consequently if $x \in D$, $A_t A_s x = A_s A_t x = A_{s+t} x$. Now the same argument as used by Sz. Nagy [4, p. 74] shows that $(A_t x, x)$ for each fixed $x \in D$ is bounded above as a function of t in every interval $0 < a \le t \le b$. This implies, Sz. Nagy [4, p. 73], that $(A_t x, x)$ is continuous for t > 0 and $x \in D$. We would like to apply Devinatz's theorem at this point to the A_t 's but we do not know a priori that the A_t 's form a semi-group. The following argument is almost word for word that of Devinatz [1, p. 102]. Define $H_t = A_1^t$. Clearly $\{H_t; t > 0\}$

is a semi-group. In addition using (a) we see that $H_n = A_1^n = (N_{1/2}^* N_{1/2})^n = N_{n/2}^* N_{n/2} = A_n$. Furthermore the uniqueness of square roots of positive self-adjoint operators implies that for any integers $n, m, H_{n/2}^m = A_{n/2}^m$. Now, there exists a countable set of mutually orthogonal manifolds $\{M_k\}_1^\infty$, whose direct sum is the whole space and such that, for all t>0, $H_t = \sum_{k=1}^\infty \oplus H_t^{(k)}$, where $H_t^{(k)}$ is a bounded self-adjoint operator on M_k and is the restriction of H_t to M_k (Sz. Nagy [4, p. 49]). That is, $x \in D_{H_t}$ if and only if $\sum_{k=1}^\infty \|H_t^{(k)}x_k\|^2 < \infty$, where $x_k \in M_k$, and $x = \sum_{k=1}^\infty x_k$. Then $H_t x = \sum_{k=1}^\infty H_t^{(k)}x_k$.

Given any t > 0 there exists an $m/2^n \ge t$. From the semi-group property of $\{N_t, t > 0\}$ we know that $D_{m/2^n} \subset D_t$ (D_t is also the domain of A_t). Thus for every $x_k \in M_k$, $x_k \in D_{m/2^n} \subset D_t$. Consequently, since $H_{m/2^n} = A_{m/2^n}$ and by the continuity of $(A_t x_k, x_k)$ and $(H_t x_k, x_k)$ as functions of t, we must have $A_t x_k = H_t^{(k)} x_k = H_t x_k$. This implies that $H_t = A_t$ (Sz. Nagy [4, p. 35]), and hence (4) is proved.

For any t>0 the above argument shows that $M_k \subset D_t$ for $k=1, 2, \cdots$, and hence $M_k \subset D$ for all k. Thus if $x \in \mathcal{X}$ and $x = \sum_{k=1}^{\infty} x_k$ then $y_n = \sum_{k=1}^{n} x_k$ is in D and $y_n \to x$. That is D is dense in \mathcal{X} . Moreover for any t>0 if $x \in D_t$ then $A_t y_n = \sum_{k=1}^{n} A_t x_k$ = $\sum_{k=1}^{n} H_t^{(k)} x_k \to H_t x = A_t x$. Thus for any $x \in D_t$ there exists a sequence $y_n \in D$ such that $y_n \to x$ and $A_t y_n \to A_t x$.

For each t>0 let U_t be the unitary operator defined by (3) such that $N_t=A_tU_t=U_tA_t$. From (2) and (4) it follows that A_t and N_s have the same null space, \mathfrak{R} , for all t, s>0. \mathfrak{R} is a closed linear manifold since the operators in question are closed. If we write $\mathfrak{R}=\mathfrak{R}\oplus\mathfrak{N}$ where \mathfrak{R} is the orthogonal complement of \mathfrak{R} , then \mathfrak{R} can be characterized as either the closure of R_{At} or the closure of R_{N_t} for any t>0. (If T is an operator R_T denotes the range of T.) Thus \mathfrak{R} is the null space of A_t , N_t , and N_t^* for all t>0 and if we write (3) with the proper subscript we see that \mathfrak{R} is also the null space of U_t for all t>0. (Note that $K_t(\{0\})$ is the projection on \mathfrak{R} .) It is now clear that all of the above operators are reduced by \mathfrak{R} . (A normal operator is always reduced by its null space.) Thus we can restrict all the operators in question to \mathfrak{R} . We assume $\mathfrak{R} \neq \{0\}$ since in this case everything is trivial.

- (d) If $\tilde{D} = D \cap \mathfrak{A}$ then \tilde{D} is dense in \mathfrak{A} . Assume \tilde{D} not dense in \mathfrak{A} then there exists $r \in \mathfrak{A}$, $r \neq 0$, such that $r \perp \tilde{D}$. Let $x \in D$, then $x = x_R + n$, $x_R \in \mathfrak{A}$, $n \in \mathfrak{A}$. Since $n \in D$ and D is linear we see that $x_R = x n \in D$ and hence in \tilde{D} . Therefore $(r, x) = (r, x_R) + (r, n) = 0$ which implies that r = 0 as an element of \mathfrak{A} since D is dense in \mathfrak{A} . But this contradicts the fact that $r \neq 0$ as an element of \mathfrak{A} .
 - (e) In this section all operators are considered as operators on R.

If we define $U_0 = I$ and $U_{-t} = U_t^{-1}$ then $\{U_t; -\infty < t < \infty\}$ is a strongly continuous group of unitary operators on \Re .

First we show that $A_t U_{\bullet} x = U_{\bullet} A_t x$ for $x \in \tilde{D}$. Note that $x \in \tilde{D}$ implies $A_t x \in \tilde{D}$ by the same argument as that used in (b), and also that (b) and the definition of A_t implies $A_t N_{\bullet} x = N_{\bullet} A_t x$ for all $x \in \tilde{D}$. Thus for all $x \in \tilde{D}$ we have

$$A_{t}N_{s}x = N_{s}A_{t}x$$
, $A_{t}A_{s}U_{s}x = A_{s}U_{s}A_{t}x$.

However, the semi-group property of $\{A_t, t>0\}$ implies $A_tA_t=A_tA_t$, hence

$$A.A.U.x = A.U.A.x$$

and from this we conclude that $A_tU_sx=U_sA_tx$ since A_s is one-to-one in \mathfrak{R} , i.e., A_s^{-1} exists. A consequence of this is that $U_sx\in \tilde{D}$ if $x\in \tilde{D}$. Therefore for $x\in \tilde{D}$, $N_tN_sx=N_{t+s}x=A_{t+s}U_{t+s}x=A_tA_sU_{t+s}x$ or $U_{t+s}x=A_s^{-1}A_t^{-1}A_tU_tA_sU_sx=U_tU_sx$. But the U_t 's are bounded and \tilde{D} is dense in \mathfrak{R} thus $U_tU_s=U_{t+s}=U_sU_t$ and if we define $U_0=I$ and $U_{-t}=U_t^*$ it is clear that $\{U_t; -\infty < t < \infty\}$ is a group of unitary operators on \mathfrak{R} .

We now investigate the continuity properties of this group. To this end we first note that an immediate consequence of (4) is that A_t is strongly continuous on \tilde{D} even at t=0, and that A_tx is strongly left continuous at $t=t_0$ for $x\in \tilde{D}_{t_0}=D_{t_0}\cap \mathfrak{R}$ (if $s\leq t$ $D_t\subset D_s$ and hence $\tilde{D}_t\subset \tilde{D}_s$). Suppose $t_0>0$ and $t_n\uparrow t_0$, $0< t_n< t_0$, then $\tilde{D}_{t_0}\subset \tilde{D}_{t_n}$. Let $x\in R_{A_{t_0}}$, $y\in \tilde{D}$ then $x=A_{t_0}z$ where $z\in \tilde{D}_{t_0}\subset \tilde{D}_{t_n}$. Thus we have

$$\begin{aligned} \left| \begin{array}{ccc} (U_{-t_{n}}x, y) - (U_{-t_{0}}x, y) \right| &= \left| \begin{array}{ccc} (U_{-t_{n}}A_{t_{0}}z, y) - (U_{-t_{0}}A_{t_{0}}z, y) \right| \\ &\leq \left| \begin{array}{ccc} (U_{-t_{n}}[A_{t_{0}} - A_{t_{n}}]z, y) \right| + \left| \left(\begin{bmatrix} U_{-t_{n}}A_{t_{n}} - U_{-t_{0}}A_{t_{0}} \end{bmatrix}z, y \right) \right| \\ &\leq \left\| (A_{t_{0}} - A_{t_{n}})z \right\| \cdot \left\| y \right\| + \left| \begin{array}{ccc} (N_{t_{n}}^{*}z, y) - (N_{t_{0}}^{*}z, y) \right| \\ &= \left\| (A_{t_{0}} - A_{t_{n}})z \right\| \cdot \left\| y \right\| + \left| \begin{array}{ccc} (z, N_{t_{n}}y) - (z, N_{t_{0}}y) \right| \\ &\to 0 \text{ as } t_{n} \uparrow t_{0}. \end{aligned}$$

Since $R_{A_{t_0}}$ and \tilde{D} are dense in \mathfrak{R} and $||U_t|| = 1$ it follows that $\{U_t, t < 0\}$ is weakly right continuous. However, weak right continuity at any one point t_0 implies weak right continuity for all t since $([U_{t_0+h} - U_t]x, y) = ([U_{t_0+h} - U_{t_0}]x, U_{t_0-t}y)$. A minor modification in the proof of Theorem 9.2.2 in Hille [3] shows that U_t is strongly continuous for all t. This completes the proof of (e).

From (3) we see that U_t is the identity on \mathfrak{A} and thus $\{U_t; -\infty < t < \infty\}$ is a strongly continuous group of unitary operators on all of \mathfrak{A} . (We no longer restrict the operators in question to \mathfrak{A} .) The spectral theorem for unitary groups guarantees the existence

of unique spectral resolution $F(\lambda_2)$ such that

(5)
$$U_t = \int_{-\infty}^{\infty} e^{i\lambda_2 t} dF(\lambda_2), \qquad -\infty < t < \infty.$$

In (e) we saw that $A_tU_sx = U_sA_tx$ for all $x \in \tilde{D}$. But for any $x \in D$ we have x = n + r where $n \in \mathfrak{N}$ and $r \in \tilde{D}$, hence $A_tU_sx = U_sA_tx$ for all $x \in D$ since \mathfrak{N} is the common null space of these operators. For any $x \in D_1$ there exists $y_n \in D$ such that $y_n \to x$ and $A_1y_n \to A_1x$. See (c). Hence

$$U_{t}A_{1}x = U_{t} \left[\lim_{n \to \infty} A_{1}y_{n} \right] = \lim_{n \to \infty} U_{t}A_{1}y_{n}$$
$$= \lim_{n \to \infty} A_{1}U_{t}y_{n}.$$

Moreover $U_t y_n \to U_t x$ and since A_1 is closed we have $U_t A_1 x = A_1 U_t x$. Thus $U_t A_1 \subset A_1 U_t$ for $-\infty < t < \infty$. Therefore by Fuglede's theorem [2] we obtain $E(\lambda_1) U_t = U_t E(\lambda_1)$ for all t and λ_1 and then finally that $E(\lambda_1) F(\lambda_2) = F(\lambda_2) E(\lambda_1)$ for λ_1 and λ_2 .

Putting $K(d\lambda) = E(d\lambda_1)F(d\lambda_2)$ we have

(6)
$$N_t = A_t U_t = \int_{\lambda_t \ge 0} \lambda_1^t e^{i\lambda_2 t} K(d\lambda), \qquad t > 0.$$

Clearly $K(\Lambda)$ is unique on \mathfrak{R} but since $\mathfrak{R} = K(\{0\})\mathfrak{X}$ it follows that $K(\Lambda)$ is unique on all of \mathfrak{X} .

The author would like to thank the referee for several helpful suggestions which simplified the statement of the theorem.

References

- 1. A. Devinatz, A note on semi-groups of unbounded self-adjoint operators, Proc. Amer. Math. Soc. vol. 5 (1954) pp. 101-102.
- 2. B. Fuglede, A commutativity theorem for normal operators, Proc. Nat. Acad. Sci. U.S.A. vol. 36 (1950) pp. 35-41.
- 3. E. Hille, Functional analysis and semi-groups, Amer. Math. Soc. Colloquium Publications, vol. 31, 1948.
- 4. B. Sz. Nagy, Spektraldarstellung linearer Transformationen des Hilbertschen Raumes, Berlin, 1942.

PRINCETON UNIVERSITY