ON SEMI-GROUPS OF UNBOUNDED NORMAL OPERATORS
R. K. GETOOR!

In this note we discuss the integral representation of a semi-group
of unbounded normal operators. The result for a semi-group of
bounded normal operators can be found in Sz. Nagy [4]. Recently A.
Devinatz[1] obtained a similar result for semi-groups of unbounded
self-adjoint operators. The following theorem is proved.

THEOREM. Let {N,; t>0] be a semi-group (i.e., N\N,=N..,) of
normal operators on a Hilbert space 3C. Let D, be the domain of N,
(each D dense in 3C) and let D=\1>0 D, then we suppose that Ny is
weakly continuous as a function of t (t>0) for each fixed x&D. Then
there exists a unique complex spectral resolution K(A) whose support is
contained in M =0, X=N\1+1\s, such that

t iAgt

) N,=f Me VK (AN, > 0.
M0

Proor. First recall that if N is a normal operator then N=A4U
= UA where U is unitary and A4 is self-adjoint and has the same
domain as N. In fact if K(A) is the spectral resolution of N then we
can define 4 and U as follows,

@ 4= r k@,

3) U= f s(A\)K(d\) where s(\) = {)\/ ll)‘l’ :fg’

Let us also note that if  is an integer then (N?)*=(4»Ur)* =AU~
and that (N*)?=(AU*)?=A47U-?, hence (N?)*=(N*)»,

We now prove a series of simple statements which taken together
yield our theorem.

(a) If t and s are commensurable then N,N*=N*N,. This is a
trivial consequence of the semi-group property of {N;, ¢>0} and
the fact that (NV*)»=(N})*.
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(b) If x&€D then NNFx=NX*Nux for all ¢, s>0. First if x€D
then Nax&D and N*x&ED for all t >0, since if x&ED then N,,x exists
and N,Ngx=N,,x. Thus Nx&ED, for all s and hence is in D. To
show N¥x&D, let t,>0 be fixed, then N xED for all s>0 as seen
above, hence N;N,x exists. (Domain of N}, is D,, since N, is nor-
mal.) Let s=unt, n=1, 2, - - -, then since s and f, are commen-
surable NyN,x=N,(Ngx) or N;x&Dn, for n=1, 2 - --. But by
the semi-group property of N, £>0, the D,’s are a decreasing collec-
tion of sets and therefore D=oD;=lim;. D;=1lim, .0 Dy, since
to>0. Thus Njx€ED.

If ¢, s are given and x €D then N,N*x and N}*N.x both exist. Let
t,—t, t, and s commensurable. A standard argument making use of
the continuity property of {N, t>0} shows that for a fixed
xED (N¥Nwx, y)=(N.N*x, y) for all yED,, but D, is dense in 3C
and hence N*N . x= N,N*x.

(c) If we define 4,=N;,Nys, t>0, then {4, t>0} is a semi-
group of self-adjoint operators such that

@) A=Al = f NAE(N), ‘> 0.
0

It is clear from the definition that each 4. is a positive self-adjoint
operator and moreover 47 = N*N,. Since a positive self-adjoint opera-
tor has a unique positive self-adjoint square root it follows that 4. is
the operator defined by (2) for N.. Thus D4,=D;and D=0Dg4,.

If x€D then A Ayx=N},NsNyN,2x and this is defined since
N.DCD and N*DCD for all t>0. Moreover by (b)

Lk % . *
A dx = N /2N oo N o Nsjox = N(t+s)/2N(t+a)/2x = A7,

since in general N, ;D Ni2Ny2. Also

* *
A,A,x = Lvs/gATg/zAr,/zivtmx

J* *
= NoaNep2aN 12N yjox = 4,442

Consequently if x€D, 4,A.x=A,Ax=A,.:x. Now the same argu-
ment as used by Sz. Nagy [4, p. 74] shows ‘that (4., x) for each
fixed x&D is bounded above as a function of ¢ in every interval
0<a<t<b. This implies, Sz. Nagy [4, p. 73], that (4., x) is con-
tinuous for t>0 and x&ED. We would like to apply Devinatz’s
theorem at this point to the 4,'s but we do not know a priori that the
A/'s form a semi-group. The following argument is almost word for
word that of Devinatz [1, p. 102]. Define H,=A4}. Clearly { H;;¢>0}
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is a semi-group. In addition using (a) we see that H,=A} = (N7, Ni2)"
= N;sNy2=A,. Furthermore the uniqueness of square roots of posi-
tive self-adjoint operators implies that for any integers #n, m, H,»
=A,;~. Now, there exists a countable set of mutually orthogonal
manifolds { M}, whose direct sum is the whole space and such
that, for all £>0, H;= > r., ®H®, where H® is a bounded self-
adjoint operator on M; and is the restriction of H; to M; (Sz. Nagy
[4, p. 49]). That is, €Dy, if and only if > s, ||HPx:||2< =, where
xxE My, and x= D o, % Then Hx= Y r , HYx,.

Givenanyt >0 there exists anm/2" 2 {.From thesemi-group property
of {N,, t>0} we know that D" CD, (D, is also the domain of 4.,).
Thus for every x:& Mk, %xEDppe»CD,. Consequently, since H, "
= A" and by the continuity of (A4 ek, xx) and (Hxx, xx) as functions
of t, we must have A =H®x,=Hux,. This implies that H,=A4,
(Sz. Nagy [4, p. 35]), and hence (4) is proved.

For any t>0 the above argument shows that M;CD; for
k=1, 2,---, and hence M;CD for all k. Thus if x€E3 and
x= D 4. %k then y,= D %_, x; is in D and y,—x. That is D is dense
in 3¢. Moreover for any ¢t>0 if x&D, then 4,y,= ZQ‘_I A x
= Z:=1 H®%,—Hx=Ax. Thus for any xED, there exists a se-
quence ¥,E D such that y,—x and 4 y,—Ax.

For each >0 let U, be the unitary operator defined by (3) such
that N,=A,U,=U.A,. From (2) and (4) it follows that 4; and N,
have the same null space, N, for all £, s>0. N is a closed linear
manifold since the operators in question are closed. If we write
3= RO N where ® is the orthogonal complement of i, then & can
be characterized as either the closure of R4 or the closure of Ry, for
any ¢>0. (If T is an operator Ry denotes the range of 7T.) Thus 9%
is the null space of 4,, N;, and N* for all >0 and if we write (3)
with the proper subscript we see that 9 is also the null space of U,
for all £>0. (Note that K,({0}) is the projection on 9%.) It is now
clear that all of the above operators are reduced by 9. (A normal
operator is always reduced by its null space.) Thus we can restrict
all the operators in question to ®. We assume ® {0} since in this
case everything is trivial.

(d) If D=DN® then D is dense in ®. Assume D not dense in ®
then there exists 7 E ®, 70, such that 7 LD. Let x €D, then x =xz+n,
XrER, nEN. Since nED and D is linear we see that xg=x—nED
and hence in D. Therefore (r, x) =(r, xg)+(r, n) =0 which implies
that =0 as an element of JC since D is dense in 3C. But this con-
tradicts the fact that 0 as an element of ®.

(e) In this section all operators are considered as operators on ®.
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If we define Up=I and U_;=U;' then { Uy —o<t< @ } is a
strongly continuous group of unitary operators on Q.

First we show that 4.U.x = U,4x for x€D. Note that x€ D im-
plies A,xE€ D by the same argument as that used in (b), and also that
(b) and the definition of 4, implies 4;N,x=N,A4 ¢ for all x& D. Thus
for all x€D we have

AN = N A.x, A AUx = AU A .

However, the semi-group property of {A 6 1>0 } implies 4.4,=A4.,4;,,
hence
AAUzx = AU Ax

and from this we conclude that 4.U,x = U,4x since 4, is one-to-one
in ®, i.e., A7! exists. A consequence of this is that UxED if x€ D.
Therefore for x€D, N\Nyx =Ny ox=A 11 Uit = A1 AU or Upyyx
=A7'A7'AUA,Ux="UUx. But the U/s are bounded and D is
dense in ® thus U,U,=Us,=U,U, and if we define Up=1I and
U_y=U# it is clear that {U,; — o <t< w} is a group of unitary
operators on Q.

We now investigate the continuity properties of this group. To
this end we first note that an immediate consequence of (4) is that
A, is strongly continuous on D even at t=0, and that 4. is strongly
left continuous at ¢t =t, for x& D;,=D\® (if s<¢ D;CD, and hence
D.CD,). Suppose >0 and t,71t, 0<tn<to, then D,CD,. Let
%€ R4, yED then x =4z where 2& D,,C Dy,. Thus we have

| (U_ttr ) = W=t 9| = | (U—tiduz, 9) = (U—tA o, 9) |
é I (U—lu[A to Atu]z’ y) l + |([U—'¢nAtn - U-toA to] 2, y) I

< |4 — 42)el| - |lsl] + | (N, 9) — (Nt.,z, |
= |4 — 421l + | & Newy) = (2 Nepy) |

—0 as #, T t.

Since R4, and D are dense in ® and ||U]| =1 it follows that { U, <0}
is weakly right continuous. However, weak right continuity at any
one point £y implies weak right continuity for all ¢since ([Uiys — UsJx, 3)
=([Usr—Us )%, Ut—ey). A minor modification in the proof of
Theorem 9.2.2 in Hille [3] shows that U, is strongly continuous for
all ¢. This completes the proof of (e).

From (3) we see that U is the identity on 9 and thus
{Us; — o <t<o } is a strongly continuous group of unitary opera-
tors on all of 3¢. (We no longer restrict the operators in question to
®.) The spectral theorem for unitary groups guarantees the existence
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of unique spectral resolution F(\;) such that
) U, = f ¢MHdF (M), % << .

In (e) we saw that 4,U,x = U,A for all x&€D. But for any x&ED
we have x=n-+r where n€ 3 and r&E D, hence 4,U,x = U,4 i for all
xED since N is the common null space of these operators. For any
xED, there exists y,&D such that y,—x and A;y,—41x. See (c).
Hence

Udx = U;[ lim Aly,.] = lim UgA1y,.

n—>0 n—wo

= lim AlU tYn.

Moreover Ugy,— U and since 4, is closed we have Ui dix=A4,U.x.
Thus UiA1CA U, for — » <t< ». Therefore by Fuglede’s theorem
[2] we obtain E(\,) Uy= U,E(\,) for all £ and \; and then finally that
E()\l)F()\z) = F()\z)E(XO for A\; and A..

Putting K(d\) = E(d\) F(d\:) we have
6) Ne=AU,= | M KN, t>0.

)\130

Clearly K(A) is unique on ® but since 9t=K({0})a¢ it follows that
K (A) is unique on all of 3¢.

The author would like to thank the referee for several helpful sug-
gestions which simplified the statement of the theorem.
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