
ON SEMI-GROUPS OF UNBOUNDED NORMAL OPERATORS

R. K. GETOOR1

In this note we discuss the integral representation of a semi-group

of unbounded normal operators. The result for a semi-group of

bounded normal operators can be found in Sz. Nagy [4]. Recently A.

Devinatz [l ] obtained a similar result for semi-groups of unbounded

self-adjoint operators. The following theorem is proved.

Theorem. Let {Nt; t>0] be a semi-group (i.e., N,Na = Nt+t) of

normal operators on a Hubert space 3C. Let Dt be the domain of Nt

(each Dt dense in 3C) and let J9 = r|t>o Dt then we suppose that Ntx is

weakly continuous as a function of t (t>0) for each fixed x£Z>. Then

there exists a unique complex spectral resolution K(A) whose support is

contained in Xi = 0, X=Xi+iX2, such that

(1) Nt =  f     \'ieiMtK(d\), t > 0.
Jxi=o

Proof. First recall that if A is a normal operator then N=AU

= UA where U is unitary and A is self-adjoint and has the same

domain as N. In fact if A(A) is the spectral resolution of N then we

can define A and U as follows,

(2) A=f\\\K(dk),

r ÍX/UI,   x t¿ o,
(3) (7=1 s(\)K(d\)  where   s(\) = \

Let us also note that if p is an integer then (Np)* = (APUP)* =APU~P

and that (N*)p = (A U*)P=APU~P, hence (NP)* = (N*)P.

We now prove a series of simple statements which taken together

yield our theorem.

(a) If t and s are commensurable then NtN* = N,*Nt. This is a

trivial consequence of the semi-group property of {Nt, t>0} and

the fact that (N,*y = (N?)*.

Presented to the Society, December 27, 1954; received by the editors June 3, 1955.

1 This research was supported in part by the Office of Ordnance Research con-

tract DA-36-034-ORD-1296RD.

387



388 R. K. GETOOR [June

(b) If xED then NtN*x = N*Ntx for all t, s>0. First if xED
then NtxED and N*xED for all t>0, since if xED then Nt+Sx exists

and NsNtx = Nt+sx. Thus NtxED¡ for all 5 and hence is in D. To

show NfxED, let ¿0>0 be fixed, then NsxED for all s>0 as seen

above, hence Nf0Nex exists. (Domain of A^ is Dh since Nh is nor-

mal.) Let s = nta, n — \, 2, • ■ • , then since s and U are commen-

surable N?0Nsx = N,(N*)x) or N^xEDnh for « = 1, 2 • • • . But by

the semi-group property of Nt, t>0, the Dt's are a decreasing collec-

tion of sets and therefore D = f\t>aDt = limt^x Dí = limn^0O Dnt0 since

¿o>0. Thus Nf0xED.
If /, s are given and xED then NtN*x and N*Ntx both exist. Let

i„—►/, /„ and 5 commensurable. A standard argument making use of

the continuity property of {Nt, />0} shows that for a fixed

xED (N*Ntx, y) = (NtN*x, y) for all yED„, but D, is dense in X

and hence N,*Ntx = NtN*x.

(c) If we define At = N*/2Nt/2, t>0, then {At, t>0} is a semi-

group of self-adjoint operators such that

xUe(Xi), t > 0.
0

It is clear from the definition that each At is a positive self-adjoint

operator and moreover A2 = N*Nt. Since a positive self-adjoint opera-

tor has a unique positive self-adjoint square root it follows that At is

the operator defined by (2) for Nt. Thus DAt = Dt and D = Ot>0DAt.

If xED then AtAsx — N*/2Nti2N*/2Nai2x and this is defined since

NtDCD and N,*DCD for all />0. Moreover by (b)

AtA,x - Nt/iN,/iNt/iN,/iX = N {l+í)i2N{l+s)i2x = ^(+J»,

since in general Nft+s)/2Z)N?/2Nf/2. Also

*     *
yli/l.a; = Ns/2Nt/2Ns/2Nt/2X

= Xs/2NsnN„2Nt/2x = ¿„.4,*.

Consequently if xGÖ, ^4¡^48x=^4syl¡x = ^4s+íX. Now the same argu-

ment as used by Sz. Nagy [4, p. 74] shows that (Atx, x) for each

fixed xED is bounded above as a function of / in every interval

0<a^t^b. This implies, Sz. Nagy [4, p. 73], that (Atx, x) is con-

tinuous for ¿>0 and xED. We would like to apply Devinatz's

theorem at this point to the A t's but we do not know a priori that the

At's form a semi-group. The following argument is almost word for

word that of Devinatz [l, p. 102]. Define Ht = A\. Clearly {Ht; t>0}
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is a semi-group. In addition using (a) we see that Hn=A" = (N*/2Ni/2)n

= N*/2Nn/2=An. Furthermore the uniqueness of square roots of posi-

tive self-adjoint operators implies that for any integers n, m, H„/2m

— Ani2m. Now, there exists a countable set of mutually orthogonal

manifolds {Mk}î, whose direct sum is the whole space and such

that, for all />0, Ht= £t"_, ®Hf\ where H¡k) is a bounded self-

adjoint operator on Mk and is the restriction of Ht to Mk (Sz. Nagy

[4, p. 49]). That is, xEDHt if and only if 2*"-i ll^^l^ °°, where
XkGMk, and *= X)"-i **• Tnen Htx = ^"_t H^Xk.

Givenanyf > 0 there exists anw/2n _ /. From thesemi-groupproperty

of {Nt, t>0} we know that Dm/2»(ZDt (Dt is also the domain of At).

Thus for every xk(EzMk, %6^™/2*CPi- Consequently, since Hm/2"

= Am/2" and by the continuity of (Atxk, xk) and (Htxk, xk) as functions

of t, we must have AtXk — H¡t)xk=Htxk. This implies that Ht = At

(Sz. Nagy [4, p. 35]), and hence (4) is proved.

For any ¿>0 the above argument shows that MkÇ~_D, for

k = l, 2, • ■ ■ , and hence MkQD for all k. Thus if xÇ^K. and

x = Xrf=i Xk then yn= 23"= 1 xk is in D and yn-*x. That is D is dense

in  3C.   Moreover  for  any  t>0  if  xE.Dt then  Atyn= XX-1   Atxk

— 2t=i H¡k)xk—*HtX=AtX. Thus for any x£EDt there exists a se-

quence yn£zD such that y„—>x and Atyn—*Atx.

For each />0 let Ut be the unitary operator defined by (3) such

that Nt=AtUt= UtAt. From (2) and (4) it follows that At and N,

have the same null space, 91, for all t, s>0. 91 is a closed linear

manifold since the operators in question are closed. If we write

3C= öl© 91 where tft is the orthogonal complement of 91, then (R can

be characterized as either the closure of Rm or the closure of AV( for

any />0. (If T is an operator RT denotes the range of T.) Thus 91

is the null space of At, Nt, and Nt* for all i>0 and if we write (3)

with the proper subscript we see that 91 is also the null space of Ut

for all i>0. (Note that A(({o}) is the projection on 91.) It is now

clear that all of the above operators are reduced by ^Sl. (A normal

operator is always reduced by its null space.) Thus we can restrict

all the operators in question to (R. We assume (R5¿ {o} since in this

case everything is trivial.

(d) If D = DC\<R then D is dense in (R. Assume T) not dense in (R

then there exists rGtR.r^O, such that r A.D. Let x GZ?, then x = XR+n,

*bG(Ri «G91. Since raG-D and D is linear we see that xr=x—nGD

and hence in D. Therefore (r, x) = (r, XR) + (r, n)=0 which implies

that r = 0 as an element of 3C since D is dense in 3C. But this con-

tradicts the fact that r^O as an element of (R.

(e) In this section all operators are considered as operators on tft.
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If we define Ua = I and U-t—Uï1 then { Ut; — <» <£<<*>} is a

strongly continuous group of unitary operators on (R.

First we show that AtU„x = U,Atx for xE/3. Note that xE& im-
plies A ¡x E D by the same argument as that used in (b), and also that

(b) and the definition of At implies AtN,x = N,A¡x for all xED. Thus

for all xED we have

AtN,x = N,Atx,       AtAsU,x = A,U,Atx.

However, the semi-group property of {At, t>0} implies AtA, = A,At,

hence

A2AtU,x = AsU,Atx

and from this we conclude that AtU,x = UBAtx since A, is one-to-one

in (R, i.e., A'1 exists. A consequence of this is that U,xED if xED.

Therefore for x£Z), NtN„x = Nt+ix = At+,Ut+,x = AtAtUt+»x or Ut+,x
=A~1A^1AtUtAaUtX=UtU,x. But the Ut's are bounded and D is

dense in 01 thus UtU,= Ut+,— UaUt and if we define Ua = I and

Z7_t= U* it is clear that {Ut; — *> <t< <x>} is a group of unitary

operators on (R.

We now investigate the continuity properties of this group. To

this end we first note that an immediate consequence of (4) is that

At is strongly continuous on D even at t = 0, and that Atx is strongly

left continuous at t = ta for xEDh = DhC\(R (if s^t DtQDs and hence

DtCD.)- Suppose ¿o>0 and tn] ta, 0<tn<t0, then DhC£>t„. Let

xERAt, yED then x=Ahz where zEDtoC.D,n. Thus we have

| (C_(nx, y) - (U-hx, y) \  =  | (U-,nAtoz, y) - (U-t0At0z, y) \

g  \(U^[At0-Aln]z,y)\  + \([U-lnAtn-U-hAh]z,y)\

á ||(At0 - ¿0*||-Ml + | (<*, y) - (<z, y) |

= \\(Ai0 - Atn)zl\\y\\ + | (z, Ntny) - (z, Nhy) \

—* 0 as t„ T ¿o-

Since Ra t and 5 are dense in (R and 11 U\ \ = 1 it follows that { Ut, t < 0}
is weakly right continuous. However, weak right continuity at any

one point to implies weak right continuity for all t since ( [ Ut+h —Ut]x, y)

— ([Utn+h— Uh]x, Uh-ty)- A minor modification in the proof of

Theorem 9.2.2 in Hille [3] shows that Ut is strongly continuous for

all t. This completes the proof of (e).

From (3) we see that Ut is the identity on 91 and thus

{[/,; — oo < ¿ < oo } is a strongly continuous group of unitary opera-

tors on all of 3C. (We no longer restrict the operators in question to

öl.) The spectral theorem for unitary groups guarantees the existence
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of unique spectral resolution F(K2) such that

e^'dFÇKi), - 00 <t < 00.
-00

In (e) we saw that AtU,x= U,Atx for all x£ß. But for any xG-D

we have x = n+r where «G9Í and rÇ^D, hence AtUsx= UaAtx for all

xE:D since 91 is the common null space of these operators. For any

ïGA there exists ynE:D such that y„—»x and Aiyn-*Aix. See (c).

Hence

UtAiX = UA  limply«   = lim UtAiyn
L n—>w J       n—»«>

= lim AiUtyn.
n—»oo

Moreover Utyn—*UtX and since ^4i is closed we have UtAix = AiUtx.

Thus UtAiQAiUt for — °o <;< a>. Therefore by Fuglede's theorem

[2] we obtain £(Xi) Ut= UtE(\i) for all t and Xi and then finally that

-E(Xi)F(X2) = F(X2)£(X,) for \i and X2.

Putting K(dk) =E(d\i)F(d\2) we have

(6) TV, = ^4ti7t =  f    XiVX2iA(dX), / > 0.
J\i^o

Clearly A (A) is unique on tft but since 9l = A({o})3C it follows that

A(A) is unique on all of 3C.

The author would like to thank the referee for several helpful sug-

gestions which simplified the statement of the theorem.
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