
ON THE CONVERGENCE OF FOURIER SERIES OF
FUNCTIONS IN AN L» CLASS

RICHARD P. GOSSELIN

1. In this paper, we shall present theorems concerning the con-

vergence of certain subsequences of the full sequence of partial sums

of the Fourier series of functions which belong to some Lp class,

Kp^2. To a large extent, our theorems are based on the following

well-known theorem of Kolmogoroff [l, p. 251 ]: -£/' {nk} is a lacunary

sequence of integers, and if f(x) is a function of class L2, then the sub-

sequence snk(x;f) of partial sums of the Fourier series of f(x) converges

to f(x) almost everywhere. By lacunary sequence, we mean, of course,

that there is a X>1 such that nk+i/nk^\ for all k. In our theorems,

we are able to prove almost everywhere convergence for considerably

larger subsequences, although we lose some precision in locating the

indices.

2. We let the series

+00

(1) Z  cneinx

n=—oo

be the Fourier series of the function/(x) and consider first, for reasons

of simplicity, the case when f(x) belongs to the class L2. As a matter

of notation, we shall let [y] denote the greatest integer less than or

equal to y and make the following definition:

L log «jfc+i J

We may now state our first theorem.

Theorem 1. Iff(x) belongs to L2, and {nk} is lacunary, then there is

a sequence of positive integers {m,} containing Lk consecutive terms in

each interval (nk, nk+i) such that the subsequence

Sm,(x;f), v = 1, 2, • • • ,

of partial sums of the Fourier series of f(x) converges almost everywhere

to f(x).
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We introduce the following notation:

«*  =   X I  Cn |2,
1*1—»lrt-1

.   . nk+(u+l)Lk

hk      =   (log »t+l) X) I C» I2- M  =  0,  1,  ■  • • ,[l0g «4+1J   -   1
l»l"WH+n£.*+l

the c„'s being the Fourier coefficients of f(x) as in (1). If all the num-

bers bf, are greater than 2ek, then

[Iog"i+i]-l
.(c)

J]      5t"  > 2€fc[log nk+i]

and at the same time

2_,        ¿*    ^ log «jfc+i    ¿^      |c„|2,    or    2ek<-Tr-      — e*.
¡1=0 \n\=nk+\ [lOg Hk+1

From this contradiction, we may conclude that at least one of the

numbers 8kß), say 5t"à, does not exceed 2ek. We denote the corresponding

Fourier coefficients by dn: i.e.

in =    fi-
íc„, «* + pkLk + 1 á I » I  i»t + (w+ 1)1.*,

¿n  =    S
otherwise, A = 1, 2, • • • .

It follows that

+00

fc=l

Z    |á.|Mog|»|   =\yElhrt\lY,ek< oo.

Thus, the ¿„'s are the Fourier coefficients of a function g(x) whose

Fourier series converges almost everywhere [l, p. 253].

Now we define the sequence {m,} to take on the values m such

that nk+pkLk+l ¿m^.nk + (pk+l)Lk for each k. Since the sequences

{nk + pkLk + l}, k = odd;    and    {«* + pkLk + l],      £ = even

are both lacunary, it follows from the Kolmogoroff theorem cited

above that the sequence snk+?kLk+i(x;f) converges almost everywhere.

Now our theorem follows from the fact that for each v there is a k

such that nk+pkLk+\ úm,^nk+(pk+Y)Lk and that we may write

**,(*; /) = *•*+»*»«(*; /) + (*»,(*; &) - *n*+*»¿*+i(*; g)),

the bracketed term on the right going to 0 almost everywhere.

It is not surprising to find that the case when /(*) belongs to

Lp, Kp<2, is more complicated, and our theorem here involves



394 R. P. GOSSELIN [June

somewhat stricter hypotheses than for the L2 case. The analogue for

the number Lk will be Lk,p,a defined by

I"   (nk+i - nk)2ip'   1 1        1
Lk.p.a=\ -    ,       «>0,      — + — =1.

L(iogw*+1)"+i-2<"*'_r p   p'

Our theorem for the Lp case is the following.

Theorem 2. If f(x) belongs to Lp, \<p<2,if {nk} is lacunary, and

if y^r.i l/(log nk)a< «> for some a>0, then there is a sequence {m,}

of positive integers containing Lk,p,a consecutive terms in each interval

(nk, nk+i) such that the subsequence smr(x; f) of partial sums of the

Fourier series of f(x) converges almost everywhere to f(x).

We shall write L*,p,a simply as Lk and let Mk= [(n*+i — »*)/£*].

We introduce the following:

n*+l .  . nk+(ß+l)Lk

«* =    Z      \cn\p';  h" =        Z U»|P', P = 0,1, • • -,Mk~ l.
|n |=rn,+l |n|=„t+/iZ,i+l

By Holder's inequality,

nk+(v+l)Lk „ , .   .,,/_,   .,,   .

(2) log »i+i        2-, I c„ I   ^ log nk+i(h  )     Lk
\n\=nk+iiLk+'i

The following is tentatively assumed:

(3) €* > 7Î-^ "
(l0gWife+i)a

If now

o -   /, ,,,>\2/p'     (p'-2)/p'
2tk < (log wj+iXofc )     Lk

or

/     2e*    \p'/2   (2-p')/2        oo
(4) (--)       Lk    '   <8k , p = 0,l,---,Mk-l,

\log Wjfc+1/

then (assuming, as we may, that Mk^ (nk+i— nk)/2Lk)

/ fu \P'/i ,,, tik—\     ,   ,

2p'/2-1(wt+1 _ Wè) (-Jî-)   l7 /2 < Z «?' á
\log w/£+i/ „_o

e*.

Thus,

l-2/p' 2/p'  1-2/p' „1-2/p', N2/p'
2          [nk+i — nk)      e* 2 (»i+1 — «»)

Z,*>-■->
log nk+i (log nk+iy+a-2alp'
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by virtue of (3). This contradicts the definition of Lk so that (4) is

false, and for some p, say pk,

(log nk+i)(bk )     Lk è 2ek.

From (2) it follows that

»*+ÙUrH).L»

(5) (lognk+i) E        k|2 = 2ei.
\n\=nk+pkLk+l

If (3) does not hold, i.e. if «*^(log Wfc+i)-", and if

/^\    /1 N..(c).2/p'    (p'-2)/j>' -a
(6) (log wt+i)(S* )     Lk > 2(log w*+i)   , /* = 0,1, • • •, Mk - 1,

then

„P72r 1-8/3»',. .-(l+a)p78      .   „00 -    . ,, .
2     Z,*       (log «j+i) < 5* , m = 0, 1, • • • , Mk — 1,

and

Mk— 1
,r  03>72    l-p'/2 -<l+«)p72 ^       GO -a
Mk2     Lk      (log »i+0 <   2^ á*   = e* = U°g w*+i)    •

M=o

It follows from the preceding that

2i-2'p'(nk+i - nkyip'

(log «t+i)^1-2«'"'

This contradicts the definition of Lk so that (6) is false, and for some

P, say pk,

/, .,.(/»*). 2/p'(p'-2)/p' -a
(log nk+i)(h   )     Lk á 2(log wj+i)    .

Combining this result with (5) we have

nt+(ufc+l)L*

(7) (log Uk+i)        E k |2 á 2(e* + (log »»+!)-").
I »I—«t+ft^t+i

By hypothesis, Zt°=i (log Wfc+i)~a< 00, and by the Hausdorff-Young

theorem, E"-i «*<■». The coefficients á„ are defined as in the proof

of Theorem 1. By (7), they are the Fourier coefficients of a function

g(x) whose Fourier series converges almost everywhere. The rest of

the proof is the same as that for Theorem 1, except that we must cite

the Littlewood-Paley generalization of the Kolmogoroff theorem

[l,p. 255].
We  remark  that  since   {nk}   is  lacunary,   the  convergence  of
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Z"=i V(log «t)a is assured for a>l, but assuming more about

{nt}, e.g. letting log nksiX*, X> 1, we may take a as close to 0 as we

please.

3. Given a sequence {m,} of positive integers strictly increasing to

+ », the function <r(n) is defined to be the number of terms of the

sequence {mv} less than or equal to n. We shall say that the sequence

j«,) has upper density ß if lim sup (a(n))/n=ß. With these defini-

tions, we state our last theorem, the proof of which seems to work

only for the L2 case.

Theorem 3. If f(x) belongs to L2, then there is a sequence {mv} of

upper density one such that the subsequence

Smv(x;f), v = 1, 2, • • • ,

of partial sums of the Fourier series of f(x) converges almost everywhere

tof(x).

We let {k„} be a sequence of positive integers such that kß divides

k»+i and such that if X„ = &„+!/&„, then X„ increases strictly to +oo.

Now we define the following:

nt+i

nk = (X„)*, ky. < k g K+i; e* =     Z      I c» K * = K + U ' ' ' > K+i ~ 1

kp+i—1

D„ =     Z «*■

If, for a given p,

2Dß < ek log nk+i,        k = k»+ \, • • • , k„+i — 1,

then

tji+l—l J) kp+i—1

2   Z   :-!L- <    Z   «* = D*
k=kß+l log «i+i k=k¡l+l

or

2     *d+i-i     j

(8)- Z    -< 1.
lOg   X„  fc.JyH   k +   1

But the sum on the left side of (8) is not less than 2_1 log (kp+i/k,,)

for p sufficiently large. Since ¿M+i/^,,=XM, a contradiction is reached

from which we may conclude that for each p, there is a k, say k(p),

kp+1 ^k(p) ^£„+1 — 1, for which
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B*00 +1

E  (log I » I ) I cn |2 á «¡too log »»(„)+! g 2Dß.
I"I-B*W+1

We choose the corresponding Fourier coefficients to define as be-

fore a new function g(x), whose Fourier series converges almost

everywhere since E "=i-^m< °°- Now we define {m,} to take on the

values m, »*(,,)<m5Î«*(„>+! for each p. Since the sequence {»*(,•)} is

lacunary, the almost everywhere convergence of sm¡i(x;f) to f(x) fol-

lows as before. For the sequence {m,},

<r(»*(/i)+i)      nkirt+i — nk(rt _ 1

nk(rt+i nk(ji)+i X(i

for each p. Since the limit of the right side is 1, the theorem is proved.
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ON THE LOGARITHMIC MEAN OF THE DERIVED
CONJUGATE SERIES OF A FOURIER SERIES

R. MOHANTY AND M. NANDA

1. Let/(2) be integrable L in ( — it, it) and periodic with period

27T and let

1 A 1 A
(1.1) /(/) ~ — a0 + E (°n cos nt + bn sin nt) = — a0 + E ^n(i)-

2 1 2 1

The differentiated conjugate series of (1.1) at t=x is

00 00

(1.2) — E x(an cos nx + bn sin nx) = — E nAn(x).
1 1

We write

<t>(t) = f(x + t)+ f(x -I)- 2](x),        hit) = -^- - d,
4 sin p

where d is a function of x.

Let Sn, tn, and <rn be the «th partial sum, the first Cesàro mean,

and the first logarithmic mean of the series (1.2) respectively. The
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