
THE FINITE GOLDBACH PROBLEM IN
ALGEBRAIC NUMBER FIELDS

ECKFORD COHEN

1. Introduction. Let F be an algebraic number field of degree ra

over the rational field, and let A represent a proper ideal of F iA 7=0

or 1). Denoting by RiA) the ring of residue classes (mod .4), we pro-

pose in this paper to investigate the representability of the elements

of RiA) as sums of primes in RiA).

The present paper extends to algebraic number fields of arbitrary

degree a problem considered previously in the case of the rational

field. We state the main results proved in the rational case. For this

purpose, suppose that m is a rational integer, raz>l, and that Rim)

is the ring of residue classes (mod raz).

Theorem la. There exists an s such that every element of Rim) is a

sum of s primes of Rim) if and only if raz has at least two distinct prime

factors. For such raz, the minimum value M of s is given by M = 2 if

raz is odd, by M = 3 if m is even and has at least two distinct odd prime

factors or if raz is twice an odd prime power, and by M = 4 if raz ¿5 of the

form raz = 2»pK where X ̂  1, p > 1, and p is an odd prime.

Theorem 2a. Every number of Rim) is representable as a sum of at

most three primes in Rim) if and only if raz has at least two distinct prime

factors. Every number of Rim) is a sum of at most two primes in Rim)

if and only if raz is odd with at least two distinct prime factors or raz is

even and is of the form m = 2lip, p^l, p an odd prime.

The generalizations of Theorems la and 2a to algebraic number

fields are furnished, respectively, by Theorems 1 and 2 of §3. A glance

at the statements of these theorems will reveal entirely new features

that prove the rational field to be quite special for the problem under

consideration. The method of the paper, while in general paralleling

that of [2], involves a new type of result, contained in Lemma 6,

which makes it possible to employ the results for the rational case

in deducing the more general theorems.

The final section is concerned with the finite Goldbach property, a

term used in connection with fields whose residue class rings possess a

property corresponding to the celebrated Goldbach hypothesis for
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ordinary integers. (For a precise definition see §4.) A criterion for

such fields is established in Theorem 4, from which it follows that the

rational field possesses the finite Goldbach property (Corollary 1).

2. Notation, terminology, and preliminary lemmas. The notation

F, «, A, and R(A) will have the same significance in the rest of the

paper as in the Introduction. The usual notation N(A) for the norm

of an ideal A will also be used.

In our later discussion it will be necessary to distinguish between

prime ideals of norm = 2 and those of norm?£2. We shall say, there-

fore, that a prime ideal P is of type I if N(P)>2 and of type II if

N(P)=2. Using this terminology, the canonical factorization of A

will be written

(2.1) A = PÎ1 • • • pI"Q?   -Q? (Ai > 0, Pi > 0),

the Pi and Q¡ denoting distinct prime ideals of types I and II, re-

spectively (l = h+k>0).

We next choose ideals d, D¡, all prime to A, l^i^h, 1 ¿ji£k, and

such that cti = PiCi and ß,=QjDj are principal. On the basis of this

notation and [l, Lemma 2], one has the following result.

Lemma 1. Every element p of R(A) may be represented in the form

(2.2) p = aT ■ ■ ■ alVi1 ■ ■ ■ ßl% & A)- 1,

the exponents ai and bj being uniquely determined by the conditions

O^a.áXi, OúbjúPi-

From an ideal-theoretic point of view, the ring R(A) is a finite

(principal ideal) ring with distinct prime ideals generated by «i, • • • ,

dh, ßi, • • ■ , ßk- This fact may be restated as

Lemma 2. The primes of R(A) are the elements of the form iri=a.&,

■Í-Afc (i-l, • • • , *;¿-l, ■••,*,(*, A) = i).

We point out that there is no loss of generality in this paper in

assuming p to have the representation

(2.3)       p = r«T,£,    r» = n * ',    T' = IL ß?,   (f. a) = i,
i=i j=i

where h^u^Q, ¿^u^O, Aj^dj>0, «,-ï>ey>0. We shall say thatp is a

unit of R(A) if (p, A) = l, and is composite in case it is neither a unit

nor a prime. The symbol § will at all times be used to indicate a unit.

In addition, A will be termed absolutely even in case k>0 (2.1).
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Vacuous products and sums will be denoted as usual by 1 and 0,

respectively.

By the preceding discussion, the following lemma is evident.

Lemma 3. An element p is a sum of s primes in RiA) if and only if

there exist elements 71, • • • , 7» from the set (a,-, ßj), repetitions per-

mitted, such that the congruence

(2.4) pB7líl+...+7¿

has a solution (mod A) in £¿ prime to A.

If such a solution of (2.4) exists, then the congruence will be termed

solvable (mod A). If further we denote the number of solutions of

(2.4) to the modulus B by A,(p, B), then the factorability of this

function (mod B) leads to the following result.

Lemma 4. The congruence (2.4) is solvable (mod A) if and only if it

is solvable (mod P*') and (mod (#''), h^i^l, k^j^l.

Thus, the problem of representing p as a sum of primes in RiA)

reduces to the question of the solvability of (2.4) to the modulus P\

where Px ranges over the maximal prime-power divisors of A. In

this connection, we have the following result, proved in [l, §4,

Corollary 2 ] ;

Suppose P to be of norm A(P) =pf, p a rational prime, and suppose

further that (yit P) = 1 if t^i (5^Z>0), (7,-, P)r¿\ifi>t. Then

(2.5) N.ip, Px) = p'«>—»ip' - l)-'[ipr - 1)< + <z(p) tit)),

where qip) = — 1 or pf — 1 according as pfeor = 0 (mod P), and e(Z) = 1

or — 1 according as t is even or odd.

Therefore, one may deduce

Lemma 5. Under the conditions of the preceding result, Ns(j>, Px) =0

if and only if one of the following holds :

P is of type  I,        p =■ 0 (mod P),       t = 1;

(2.6) P is of type II,        p = 0 (mod P),       t odd;

P is of type II,        p^O (mod P),       t even.

The following observation is useful in the proofs: If X>0 and

7 = 0(mod P), 7^0(mod P2), then the congruence 7p'=7^1+ • • •

+7&>(mod p*) is solvable, if and only if p'=^-f- • • • +£s(mod P*-"1)

is solvable.

3. Sums of primes in RiA). We shall refer to the quantities h, k,
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A,-, p,; u, v, di, e¡ (2.3), as the integral parts of p in R(A). Suppose now

that A' is a proper ideal of an algebraic number field F' of (arbitrary)

degree w' relative to the rational field. On the basis of Lemmas 3 and

5, we are led to

Lemma 6. // the corresponding integral parts of p in R(A) and p' in

R(A') are equal, then p' is a sum of s primes in R(A') if and only if p

is a sum of s primes in R(A).

This lemma makes it possible to use the results proved in the

rational case in treating algebraic number fields of degree >1. In

particular, it is only necessary to consider values of k ^ 2, because the

cases k=0 and 1 have already been treated in the rational case.

Theorem 1. There exists an s^l such that all elements of R(A) are

expressible as sums of s primes in R(A) if and only if 1>1, h>0. For

such ideals A, the minimum value M of s is given by M = 2 if k = 0 and

h^2; by M = 3 if (i) k = l and h^2, if (ii) h = k=px = l, or if (iii) k = 2
and hg£ 1 ; by M = i if h = k = l, and pi> 1 ; and by M = k if k}z3 and
hiil.

(Note. In the following proof the quantities yc will be used as in

Lemma 3 to denote elements chosen from among the a,- and /3y.)

Proof. By Theorem la and the remarks following Lemma 6, we

may consider the theorem proved in case k =0 or 1. In the remainder

of the proof we shall therefore suppose that k^2.

If h = 0 and 5 = 25, then consider the congruence,

(3.1) p = Ti€i+ • ' • +72S&S (5>0).

In case p=T*_i£, ßk must appear among the 7's an odd number of

times if (3.1) is to be solvable (mod Qïk), while each ß} (j<h) must

appear an even number of times, or not at all, to insure solvability

(mod QP'), (Lemma 5). This is impossible; therefore, by Lemmas 3

and 4, Tk-i¡; is not a sum of an even number of primes in R(A). In a

similar fashion, one may observe that the congruence

(3.2) p = yi£i + • • • + 72s+i?2s+i (S â 0)

cannot be solvable (mod A) if p=r2l-. Therefore t2£ cannot be repre-

sented as a sum of an odd number of primes in R(A), and the asser-

tion regarding h=0 is proved.

In what remains we may suppose A^l. Placing k = 2, the con-

gruence

(3.3) fhßl1^ = Till + 72k (mod A)
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cannot be solvable, because 02 must appear exactly once as a coeffi-

cient on the right, with the result that neither 0i nor the a¿ can appear

at all (Lemmas 4 and 5). Thus M =¿2 in this case. The value M = 3

will suffice in all cases, however, since the following congruences are

all solvable (Lemmas 3, 4 and 5).

U = aifi + 0ifc + 01É, (mod A),

(3.4) Ußii = 0ifi + /32i2 + 02£3 (mod 4),

fu/Of* = «ifi + j8i£, + 02£s (mod 4).

Using the same type of argument as above, we note that if 5 <k, the

congruences

(3.5) £« 7iii + • • • + 7.f.    (mod 4), 5 even,

(3.6) r*£ = Tifc + • • • + 7 A    (mod 4), 5 odd,

cannot be solvable. Hence for all A for which M exists, M^k.

To complete the proof, one must show that every element of RiA)

is a sum of k primes when k^3 and &2£l. If s = k = 2S^A, then as

above, (3.1) is solvable (mod A) for the following values of p and

ft ii — 1, ■ ■ ■ , 5):

(1) P = fuT„£,        7. = &+•■        (i-l,'",»-l¡0áf<*-l),

7» = «1 (i > £ — v);

(2) p = ¿Vi-iÉ,       71 = 72 = 73 = ßk,       y i = ai       ii> 3);

(3) p = f„T*£, 71 = 72 = /3i, 7¿ = ai (* > 2).

If 5 = ^ = 25+1^3; then (3.2) is solvable (mod A) in these cases:

(1) P = fuf, 71 = o¡i,       yi — ßi (*>1);

(2) p = {-.rife       7i = /3i,        7. = 02 (*>D;

(3) p - f„r„£,       7i = 0t-    (* £ v g É),       7i = «1   (* > v > 1).

Application of Lemma 3 proves the theorem.

The generalization of Theorem 2a to algebraic number fields is

contained in

Theorem 2. There exists an H such that every element of RiA) is a

sum of at most H primes in RiA) if and only if A is neither a prime-

power ideal (l-\) nor is of the form A=Q{1 ■ ■ ■ QS+^l (A = 0, k odd).
For all other proper ideals A, the number H may be chosen to be H = H',

where H' = 2 if k = 0; H' = 3 if h^l and k = l, 2, or 3; H' = 4in case
(i) h^l and &=4, 5, or 6, and in case (ii) A = 0, k — 2; H'=j+1 if

h^i, k = 2j+1^7; H'=j if jfcfel, k = 2j^8; and H'= 2j if h = 0,
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k = 2j^ 4. The minimum value 9 of H is given by 9 = H' with these ex-

ceptions: 9 = 2 in case (i) h = k=~Ki = l, and in case (ii) h = 0, k = 2,

Pi=p2 = l; 9 = 3 in case (i) k = 2, h=0, and either pi = l, p2¿¿\ or

Pit^I, p2 = l, and in case (ii) k = 4, k¡g 1, and either h^l or pi = l for

at least one i.

The proof of this theorem will be omitted since the method, al-

though rather involved, is similar to that developed in detail in the

proof of Theorem 1. We mention that if k^8, h£l, then it can be

shown in case k = 2j, that every element of R(A) is a sum of either

j —1 or j primes of R(A), while if k=2j+l, that every element of

R(A) is a sum of either j — l,j, or j + 1 primes.

4. Sums of two primes in R(A) and the finite Goldbach property.

Using the same sort of argument as in the proof of Theorem 1, the

following two statements concerning sums of finite primes can be

proved. If k^2, h = 0, an element p = fuT,,£ is a sum of two primes in

R(A) if and only if either

v = k - 2,

(4.1) v = k, e¡ > 1 (for at least onej), or

v = k, pj = e¡ = 1 (for at least ont j).

If k^2, h^l, then an element p is not a sum of two primes in R(A)

if and only if either

u = h,        v = k — 1;

(4.2) k - 2 > v ^ 0; or

v = k,        u = 0,        h = 1,        ßj> e,- = 1 (ally).

Suppose now that A is an absolutely even ideal (§2). An element p

will be called absolutely even in R(A) if v>0, that is, provided A and

p have in common a prime ideal divisor of type II. Corresponding to

the statement of the ordinary Goldbach problem, we shall say that

the ring R(A) possesses the Goldbach property, provided A is ab-

solutely even, and every composite, absolutely even p of R(A) is a

sum of two primes in R(A). We shall also say that the field F

possesses the finite Goldbach property if F contains at least one prime

ideal of type II and if for every absolutely even A of F, R(A) possesses

the Goldbach property.

Theorem 3. The ring R(A) possesses the Goldbach property if and

only if A has but one distinct prime divisor of type 11 or if A is of the

form A=QiQ2.
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Proof. That every composite, absolutely even p of RiA) is a sum

of two primes in RiA), provided k = \, follows from Theorem 3 of

[2] and Lemma 6 above. This is not the case for A with k>\, hs^l,

because, by (4.2), p is not a sum of two primes in RiA) when u=h,

v = k — l. A similar observation holds for h = 0, k^3 by (4.1). In the

remaining case, h = 0, k = 2, it also follows by (4.1) that Ti£ is not a

sum of two primes in RiA); further, ti|¡ is always a prime only if

Mi =M2 = 1. In the latter case, however, T2% must be a sum of two primes

in RiA).
It thus follows that the finite Goldbach property holds in F if and

only if F contains a single prime ideal of type II. This is restated as

Theorem A. An algebraic number field of degree n over the rational

field possesses the finite Goldbach property if and only if the rational in-

teger 2 is the nth power of a prime ideal of F (2 = Qn).

Corollary 1. The rational field Z possesses the finite Goldbach

property.

In the case of quadratic fields Zid112), d square-free, it is recalled

[3] that the integer 2 is the square of a prime ideal, or otherwise,

according as d is not or is =1 (mod 4). Hence one may state the

following corollary to Theorem 4.

Corollary 2. The quadratic field Zid112), d square-free, possesses

the finite Goldbach property if and only if d = 2 or 3 (mod 4).
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