A NOTE ON CONVEX MAPPINGS
DEBORAH TEPPER HAIMO

In a recent paper [1], R. F. Gabriel proved the following theorem.
“If f(2) is of the form 1/z+aiz+axs?+ - - -, regular for 0<|z| <1,
and if

| {1), 2} | = 20 for 5] <1,
where ¢, is the smallest positive root of the equation
22117 — tan 212 = 0,

then f(z) is univalent in 0<Iz| <1 and maps the interior of each
circle |2| =r<1 onto the exterior of a convex region. The constant
co is the largest possible one.”

It is the purpose of the present note to establish a more general
result, which contains Gabriel’s theorem as a special case. The proof

will be based, partly, on methods developed in a recent paper of
Z. Nehari [2].

THEOREM 1. Let

1) fG)=1/z4+ a0+ az+ a2+ - -+
be a function which is regular for 0 < [ z| <1. Let
@) | {£@), =} | = 24(]2]), |21 <1,

where q(x) s a function with the following properties:
(3) (a) q(x) is positive and continuous for 0=x <1,
(b) The differential equation

4) y"(x) + g(x)y(x) = 0

has a solution y(x) which does not vanish in 0 <x <1, and satisfies the
boundary conditions

y(0) =0,
(5) i xy' (%) > 1/2,
z-1 y(%)

(Because of our assumptions, this limit always exists.) Then f(2) maps
the disk | 2| <1 onto the complement of a convex domain. This result is
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sharp in the sense that in all cases in which q(3) is an analytic function
in |z| <1 for which Iq(z)l gq(lzl), the constant 2 in (2) is the largest
possible.

The proof of the theorem will be based on the following two
lemmas.

LeMMA 1. Let p(x) be positive and continuous in 0=<x <1, and let
y(x) and w(x) be solutions of the differential equations

y"'(x) + p(x)y(x) = 0,
w'(x) + Ap(x)w(x) = 0, A> 1,

respectively, which are positive in 0 <x <1 and for which y(0) =w(0) =0
and lim,.; w'(x)/w(x) > — . Then

) tim 2 ¢ i
z-1 'w(x) z—-1 y(x)

(6)

Proor. We first note that both limits exist. Indeed,
' (2)\’ w'(x)\?
( ()) =_< ()) —ap() <0,
w(x) w(x)
which shows that @’ (x)/w(x) decreases monotonically with increasing
x. Since the limit — « is excluded, the existence of a finite limit fol-

lows. To obtain the corresponding property of y(x), we note that from
(6) and the fact that y(0) =w(0) =0,

w(x)y'(x) — w'(x)y(x) = A = 1) j; zif(x)y(x)ﬂ)(x)dx-

Hence,

(@ _ Y@ (-
® w(x) () T w(x)y(x )f p(2)y(x)w(=)dz,

and thus

© lim w' (%) < lim y'(®)
z-1 w(x) z—1 y(x)

In view of the monotonicity of y’(x)/y(x), this proves the existence
of lim,.; 9'(x)/y(x). To prove that (9), moreover, implies the stronger
inequality (7), we have to show that w(x) and y(x) remain bounded
if x—1. Since lim,_.; ¥'(x)/y(x) exists, we have y’'(x)/y(x) <M < » for
0<xo<x<1. Hence
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* y'(%)
2 Y(%)

log y(x) = log y(x0) + dx < log y(xo) + M(x — =),

and a similar inequality for w(x). This proves the lemma.

LeEmMA I1. Let w(x) be a function which is continuous, has a con-
tinuous derivative, and satisfies the conditions w(0) =0, w'(0) 0. Then
there is a posttive number 8, such that, for r, 1 —6 <r <1, we have

rf w2 (x)dx = rf g(x)wi(x)dx + (1/2 — ) wi(r),
0 0
with equality holding if, and only if, w(x) =cy(x), where y(x) is a solu-
tion of (4), satisfying (5).
Proor. Consider the function
y'(x)

¢(x) = w'(x) — —— w(x).
y()

By our assumptions, ¢(x) is defined for all x in the interval 0 Sx <r.

The integral
];rdﬂ(x)dx = j;r [w'(x) - };((:)) w(x):rdx

exists and is non-negative. Expanding and integrating by parts, we
have
y" (%)

"
y(x)

y,(r) 2 ! 2
o w<r>+fo w(z)

For small ¢, it follows from (5) that if » is such that 1-6<r<1,
ry'(r)/y(r) >1/2 —e. Hence the inequality becomes

w(r)

r

0 §f w'?(x)dx — dx.
0

0= frw”(x)dx — (1/2 —¢) — frwz(x)q(x)dx,

or
rfrw”(x)dx = wi(r)(1/2 — ¢) + rfr'wz(x)q(x)dx.

Equality will hold if, and only if, ¢(x) =0: that is,

w'(x) — —y,—(ﬂ w(x) = 0,
y(x)

or cy(x) =w(x).
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ProoF oF THEOREM I. Let
(10) () = 1/2{f(2), z}.

Then, by the classical theory of differential equations, f(3) may be
written in the form

%(3)
oz)

where %(2) and v(z) are linearly independent solutions of the differ-
ential equation

(12) y'(x) + p(x)y(x) =0,
with p(2) regular in Izl <1. Since f(z) has the form (1), %(2) and 9(2)
may be so chosen that

#(0) = 1,

2(0) =0, ¢(0) = 1.

(11) fa) =

(13)

A necessary and sufficient condition that f(z) map the disk |z| <1
onto the exterior of a convex domain is that

2f"(s)
(14) 1+Re {m} <0 for |z| <1.
Since
vn %W (2)v(z) — u(z)v'(2) _ 1
T T T
17 — v,(z)
f (Z) =2 v‘(z) ’

(14) is equivalent to

e 290

or

(15) Re {Z’('Z(:)} > 1/2.

Re{zv’ (2)/v(2) } is a harmonic function and takes its minimum on the
boundary, so that if (15) holds for Izl =r, the same will be true for
| 2| <r. Hence f(z) will map || <1 onto the complement of a convex
region, if the condition
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(16) Re {z”'(z)} 21/2—¢

2(2)

is satisfied for a sequence of circles | 3| =7,, £,41>7,, r,—1, provided

e=¢(r,)—0 for r,—1. Indeed, the maximum principle shows that (16)

will be true for |s| =7, and e=e(r,) with p<v. If we let -, it

follows that (15) is satisfied for all , and thus throughout Iz] <1.
Consider the equation

v"(2) + p(2)o(z) =0, 9(0) =0, (0) =1

Multiplying through by #(2)dz and integrating along the ray 6 =con-
stant from the origin to the point 3=re%, 1 —8§<r <1, we have

0= fo zv"(z)i)(z)dz+ fo 'p(z)|v(z) |2dz.

Integrating by parts and multiplying through by 2, we obtain

v'(2)

e | v(re®) lz - ,j;'[ ' (pe'?) |2dp

0=z

+r f e (pe”) | v(pe?) |2dp.
0
On taking real parts, and noting, in view of (2) and (10), that

Re {e*p(pe%)} < q(p),
it follows that

A7) | o(re®) |2 Re {z:(lz(;)} > j; | (oo [2dp

=1 a0 o) .

For z=pe®, v(z) is a function of p along the ray @=constant. If
9(2) =0 (2) +47(2), both o and 7 satisfy the conditions of Lemma II.
Since |v(2)|2=0%(z)+7%(2), |v'(2)| 2=02(5) +72(3), we thus have the
inequality

a8) [ e o 2 a0 10/2 = 0 + 1 [ 460 o) 1.

Applying (18) to (17), we get
27 (2)

9(z)

|v(re"") I’Re { } = l (re®) [2(1/2 — ¢),
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or

e {2 s

and the proof is complete, since the conditions for (16) are satisfied.

It remains to be shown that the theorem is sharp in those cases in
which ¢(z) is an analytic function of z in lz] <1 for which |q(z)|
éq([ z] ). Since ¢(x) satisfies (4), it follows from Lemma I that there
exists a constant C, C>1, such that the equation

y"'(x) + Cq(x)y(x) = 0

has a solution y(x) for which y(0) =0 and lim,.; (%'(x)/y(x))=1/2.
The function ¢i1(x) = Cq(x) may thus take the place of ¢(x) in Theorem
I. Let now v(2) be the solution of the equation

v"(z) + Aqu(2)v(z) = 0, A> 1,

with the initial conditions v(0) =0, ’(0) =1. It follows from Lemma I
that

. (%)
lim

-1 (%)

<1/2.

There will therefore exist points x, such that
xv' (%)
v(x)

But, as shown before, this implies that the function f(z), normalized
by (1), which is a solution of {f(z), 2} =2\g:(2) does not map |z| <1
onto the complement of a convex region. This shows that the con-
stant 2 in (2) is indeed the largest possible.

The case treated by Gabriel, [1], corresponds to ¢(z) = co =constant.
In view of the above, the exact value of ¢, has to be determined by the
requirement that the equation y"'(x)4+coy(x) =0 has a solution y(x)
such that (0) =0, y(x) #0 for 0<x <1, and y’(1)/y(1) =1/2. It fol-
lows that ¢, is the smallest positive root of 2x'/2—tan x'/2=0.

< 1/2, 0<x<1.
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