
A NOTE ON CONVEX MAPPINGS

DEBORAH TEPPER HAIMO

In a recent paper [l], R. F. Gabriel proved the following theorem.

"If/(z) is of the form l/z+aiz+a2z2+ • • • , regular for 0<|z| <1,

and if

| {/(«), a} |   ú2co for | «|   < 1,

where Co is the smallest positive root of the equation

2X1'2 - tan x1'2 = 0,

then/(z) is univalent in 0<|z| <1 and maps the interior of each

circle \z\ =r<l onto the exterior of a convex region. The constant

Co is the largest possible one."

It is the purpose of the present note to establish a more general

result, which contains Gabriel's theorem as a special case. The proof

will be based, partly, on methods developed in a recent paper of

Z. Nehari [2].

Theorem I. Let

(1) f(z) = 1/z + a0 + aiz + a2z2 + • • •

be a function which is regular for 0< | z\ <1. Let

(2) I lf(z),z}\   ^2q(\z\), |*| <1,

where q(x) is a function with the following properties:

(3) (a) q(x) is positive and continuous for 0^x<l.

(b) The differential equation

(4) y"(x) + q(x)y(x) = 0

has a solution y(x) which does not vanish in 0<x<l, and satisfies the

boundary conditions

y(0) = 0,

(5) x/(x)
lim ^ 1/2.
i->i    y(x)

(Because of our assumptions, this limit always exists.) Then f(z) maps

the disk I z\ < 1 onto the complement of a convex domain. This result is
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sharp in the sense that in all cases in which q(z) is an analytic function

in \z\ <1 for which \q(z)\ ^q(\z\), the constant 2 in (2) is the largest

possible.

The proof of the theorem will be based on the following two

lemmas.

Lemma I. Let p(x) be positive and continuous in 0 = x<l, and let

y(x) and w(x) be solutions of the differential equations

y"(x) + p(x)y(x) = 0,
(6)

w"(x) +\p(x)w(x) =0, X > 1,

respectively, which are positive in 0 < x < 1 and for which y (0) = w(0) = 0

and limXH.! w'(x)/w(x) > — <x>. Then

w'(x) y'(x)
(7) lim —— < lim

z—i w(x)        i—i  y(x)

Proof. We first note that both limits exist. Indeed,

/w'(x)\' /w'(x)\2

("7t) = - (-7t) " xp(x) K °'
\ w(x) / \ wix) /

which shows that w'(x)/w(x) decreases monotonically with increasing

x. Since the limit — =o is excluded, the existence of a finite limit fol-

lows. To obtain the corresponding property of yix), we note that from

(6) and the fact that y(0) =w(0) =0,

vix)y'ix) — w'ix)yix) = (X — 1)  I    pix)yix)wix)dx.
Jo

Hence,

w'ix)       y'ix)        (X - 1)    fx
(8) -=-I    pix)yix)wix)dx,

wix)        yix)        wix)yix) J o

and thus

w{

w'ix) y'ix)
(9) lim —— = lim

wix)       x->i   yix)

In view of the monotonicity of y'ix)/yix), this proves the existence

of lima,.,! y'ix)/yix). To prove that (9), moreover, implies the stronger

inequality (7), we have to show that wix) and yix) remain bounded

if x—»1. Since lim^i y'(x)/y(x) exists, we have y'ix)/yix) <M< °o for

0<xo<x<l. Hence



1956] A NOTE ON CONVEX MAPPINGS 425

/'» y'(x)——— dx è log y(xo) + M(x — x0),
*„ y(x)

and a similar inequality for w(x). This proves the lemma.

Lemma II. Let w(x) be a function which is continuous, has a con-

tinuous derivative, and satisfies the conditions w(0) =0, w'(Q) ?^0. Then

there is a positive number 5, such that, for r, 1 — 5<r<l, we have

r f w'2(x)dx = r f q(x)w2(x)dx + (1/2 - t)w2(r),
Jo Jo

with equality holding if, and only if, w(x) =cy(x), where y(x) is a solu-

tion of (4), satisfying (5).

Proof. Consider the function

/(*)
<p(x) — w'(x)-w(x).

y(x)

By our assumptions, <p(x) is defined for all x in the interval O^x^r.

The integral

f rT ?'(*)       I2
I    <b2(x)dx =   I       w'(x)-w(x)    dx

Jo Jo   L y(x) J

exists and is non-negative. Expanding and integrating by parts, we

have

—— w~(r) +  I    w2(x) ——-
y(r) Jo y(x)

For small e, it follows from (5) that if r is such that 1— 8<r<l,

ry'(r)/y(r)>l/2—e. Hence the inequality becomes

w2(r)

0 ^   I    w'2(x)dx-w2(r) +  I    w2(x) -dx.
Jo y(r) Jo y(x)

0

or

Jw2(r) rr
w'2(x)dx-— (1/2 - e) -   I    w2(x)q(x)dx,

0                               r J a

r I    w'2(x)dx S: w2(r)(l/2 — e) + r I    w2(x)g(x)ííx.
^0 »'o

Equality will hold if, and only if, <p(x) =0: that is,

/(*)
w'(x)-—- w(x) = 0,

y(x)

or cy(x) —w(x).
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Proof of Theorem I. Let

(10) piz) = 1/2 {/(*),*}.

Then, by the classical theory of differential equations, /(z) may be

written in the form

m(z)
(11) /(«)

viz)

where u(z) and viz) are linearly independent solutions of the differ-

ential equation

(12) y"ix) + pix)yix) = 0,

with />(z) regular in |z| <1. Since/(z) has the form (1), w(z) and viz)

may be so chosen that

«(0) = 1,
(13)

t»(0) = 0,        »'(0) = 1.

A necessary and sufficient condition that/(z) map the disk |z| <1

onto the exterior of a convex domain is that

(14) l+Re<^-^=0 for \z    <1.
Xf'iz)) '    '

Since

/'(«)
u\z)viz) — uiz)v'iz)

v2iz) v2(z)

v'(z)
f"(z) - 2 —,

(14) is equivalent to

' zv'(z)
1 - 2 Re

f zi>'(z)\

or

(15) Re im s 1/2.
I »(z) ;

Re{zv'(z)/v(z)} is a harmonic function and takes its minimum on the

boundary, so that if (15) holds for |z| =r, the same will be true for

I z | <r. Hence/(z) will map | z| < 1 onto the complement of a convex

region, if the condition
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( zv'(z))

(16) Re \—\±\ 2E 1/2 - «
( v(z) )

is satisfied for a sequence of circles \z\ =r„ rr+i>rr, r,—>1, provided

e = e(r»)—»0 for r,—»1. Indeed, the maximum principle shows that (16)

will be true for \z\ =r„ and e = e(r,) with p<v. If we let p—►», it

follows that (15) is satisfied for all rM and thus throughout \z\ <1.

Consider the equation

v"(z) + p(z)v(z) = 0,       v(0) = 0,       »'(0) = 1.

Multiplying through by v(z)dz and integrating along the ray 9 = con-

stant from the origin to the point z = reie, 1— 5<r <1, we have

0 =  f v"(z)v(z)dz + f p(z) I s(z) |2¿z.
»'o Jo

Integrating by parts and multiplying through by z, we obtain

v'(z) . , rr. .
0 = z^- I v(reie) |2 - r I    I j/(pei9) |2</p

v(z) J 0

+ r i e2iep(peie) \ v(peu) \2dp.
Jo

On taking real parts, and noting, in view of (2) and (10), that

Re {e™p(pe<°)} á q(P),

it follows that

Í zv (z)\ C r
(17) I v(re») |2 Re f-+/[■  = r        | v'(Pe») \2dp

I !>(z)   > J0

-r f,q(p)\v(pe^)\2dp.
J 0

For z=peie, v(z) is a function of p along the ray 0 = constant. If

v(z) =o(z)-\-ir(z), both a and r satisfy the conditions of Lemma II.

Since \v(z)\*=cr2(z)+T2(z), \v'(z)\ 2=o?(z)+t2(z), we thus have the

inequality

(18) r f ' \v'(pe") \2dp ̂  I «(«") |2(l/2 - «) + r f 'q(p) | v(pe") \2dp.
Jo Jo

Applying (18) to (17), we get

' zv'(z)(zv'(z))
(re") |2 Re \—^}  =  | v(re«) |2(l/2 - .),

( v(z) )
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or

zv'(z)

v(z)

{ zv'(z))
Re \——}  > 1/2

I viz) )

and the proof is complete, since the conditions for (16) are satisfied.

It remains to be shown that the theorem is sharp in those cases in

which qiz) is an analytic function of z in |z| <1 for which |g(z)|

= ç(| z| ). Since g(x) satisfies (4), it follows from Lemma I that there

exists a constant C, Ol, such that the equation

/'(*) + Cqix)yix) - 0

has a solution y(x) for which y(0)=0 and lim^i (y'(x)/y(x)) = 1/2.

The function ffi(x) = Cqix) may thus take the place of o(x) in Theorem

I. Let now viz) be the solution of the equation

v"iz) + X?i(zMz) =0, X > 1,

with the initial conditions z/(0) =0, z»'(0) = 1. It follows from Lemma I

that

xv'ix)
lim —— < 1/2.
i->i   vix)

There will therefore exist points x, such that

xv'ix)

vix)
< 1/2, 0 < x < 1.

But, as shown before, this implies that the function /(z), normalized

by (1), which is a solution of {/(z), z\ =2Xçi(z) does not map |z| <1

onto the complement of a convex region. This shows that the con-

stant 2 in (2) is indeed the largest possible.

The case treated by Gabriel, [l ], corresponds to qiz) =Co = constant.

In view of the above, the exact value of Co has to be determined by the

requirement that the equation y"(x)+Coy(x) =0 has a solution yix)

such thaty(0)=0, y(x)^0 for 0<x<l, and y'(l)/y(l) = 1/2. It fol-

lows that Co is the smallest positive root of 2x1/2—tan x1/2 = 0.
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