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1. Introduction and main result. Let {íF(í), O^/^l} be the

Wiener process, that is, a Gaussian stochastic process of real-valued

random variables with E{ W(t)} = 0 and E{ W(s) W(t)} = min {s,t}.

It was discovered independently by Levy [4] and by Cameron and

Martin [l ] that with probability one

(1) silEKI)-^)]'-1-
We demonstrate here a similar result for a large class of Gaussian

processes including the Wiener process as a particular case. Notation :

in the following {X(t), 0=t^l} will denote a Gaussian stochastic

process of real-valued random variables with mean function E {X(t)}

= m(t) and covariance function E{X(s)X(t)} —m(s)m(t) =r(s, t).

Now assume that m(t) has a bounded first derivative for Q — t=l.

Furthermore, assume that r(s, t) is continuous in 0 = s, t = l and has

uniformly bounded second derivatives for s^t. Let

r(t, t) - r(s, t)
D+(t) =   lim -^-—,

.-*«+ t - s

r(t, t) - r(s, t)
D~(t) =  lim -^-—,

»—(- / — 5

/(<) = D~(t) - D+(t).

The uniform boundedness of the second order derivatives of r(s, t)

implies the existence, boundedness, and continuity of the functions

D+(t), D~(t), and f(t) over 0<i<1. In particular/(i) is Riemann

integrable over the interval 0</<l. The main result can now be

stated.

Theorem 1. // {X(t), 0 — t^i} is a Gaussian process satisfying the

assumptions of the preceding paragraph, then with probability one

(2) slK?)-<^)j-J*>*
Note that the existence of the first derivative of r(s, t) at s =t is not
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assumed, in fact, it is not wanted. The existence of this derivative

would make/(í)—0 and the right-hand side of (2) would reduce to

zero, giving an uninteresting result. An important corollary to Theo-

rem 1 holds in case r{s, t) factors into the product of a function of j

and a function of t. As we shall see later there are many examples of

Gaussian processes for which the covariance function has this prop-

erty.

Corollary. If {X{t), O^í^l} satisfies the assumptions of Theorem

1, and if
(u{s)v{l), set,

(3) r{s, t) = <
\<t)v{s), s è t,

then with probability one

(4) JS |[x(f)-x(tt)] "l'Wm) - "{m)ld¡-

The proof of Theorem 1 is contained in the next section. In §3 we

give some examples of the theorem and show that (1) is implied by

(2) (and by (4)).

2. Proof of Theorem 1. Let us first assume that m(r)=0. For

any positive integer « and integers j, k with 1 áj, k ^ 2" set

a,-* = E{AXj&Xk},

Bn = £ AX*,
*-i

2"

bn = 2  £ a*k.
i.k-i

Observe that

2"

(5) E{Bn} = ¿Zakk
*=i

while

2B 2"

£{#„} = 23 3a** + 2  23   {akkan + 2ajk).
t-i j>*-i

Thus the variance of Bn is exactly ¿>n. Applying Tchebychev's in-

equality
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P{ | Bn - E{Bn} |   > w/(2n)1/2} < 2"bn/n\

If we can show that 2nbn remains bounded as n becomes infinite, an

application of the Borel-Cantelli lemma will show that with probabil-

ity one Bn — E{Bn} approaches zero as n becomes infinite.

To estimate 2nb„, let M be a bound for the three quantities

\d2r(s, t)/ds2\, \d2r(s, t)/dsdt\, and \d2r(s, t)/dt2\ in the range

O^s^t^l. Using for r(s, t) a Taylor series expansion with remainder

it can easily be shown that j^k implies

| ajk |   =  | r(fc/2», y/2") + r((k - l)/2-, (j - l)/2")

- r(ty2», (j - l)/2») - r((k - l)/2»,j/2») \ ^ 3M(l/2)2«.

Also for k = \, 2, • ■ ■ , 2"-l

akk = r(k/2n, k/2n) - 2r((k - l)/2», k/2»)

(7) + r((k - 1/2"), (* - l)/2")

= (l/2)»[Z^(*/2") - D+(k/2»)] +0((l/2)2»)

where 22nO((l/2)2n) remains bounded independent of k as n becomes

infinite. The estimates in (6) and (7) give the boundedness of 2nbn.

In conjunction with (5), the estimate in (7) also implies that

e{s-]'%(i)"IW2')+0((t)")

so that E{Bu} approaches a limit as n becomes infinite. This limit

is exactly the Riemann integral oif(t) from 0 to 1. Writing

Bn = E{Bn} + [Bn- E{Bn}]

we see that with probability one Bn itself converges to the integral

of f(t) over (0, 1). This finishes the case for which m(t)=0.

I f m (t) ^ 0, form a new Gau ssian process {X(t),0 — t = l} by taking

X(t) =X(t) —m(t). From the previous arguments we know that with

probability one

lim  ¿ Axl =   f  f(t)dt.
n-<»   fc=i J o

Now by Schwarz's inequality with Amk=m(k/2n) — m((k —1)/2")

i-   2n ""12 2n 2n

(8) ¿AwfcAxJ   g ¿Awl- ¿AXL
L k=l J k=l *=1

The second term on the right-hand side of (8) remains bounded with
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probability one. Since m'{t) exists and is uniformly bounded over

(0, 1), the sum of the Ami goes to zero as « becomes infinite. Thus,

with probability one the left-hand side of (8) goes to zero. Finally,

2" 2" 2" 2"

23 AX\ = 23 AX* + 2 23 Aw*AX* + £ Amî
*-i *-i *=i fc-i

so that

2n 2*        _ /. 1

lim  23 A^* = lim 23A^* =   I    /(O*-
«-»»   *=i n-»«   *=i •» 0

This ends the proof of Theorem 1.

3. Examples, (a) Let us first show that (1) is included in (2) and

(4). For the Wiener process r{s, t) factors into a product of a func-

tion of s and a function of t like (3) ; in fact,

ris, t) = {*'
tí,

In the notation of the corollary to Theorem Í, u{s)=s and v{t) = 1 so

(4) states that with probability one

£|[z®:x(i?9J-/.,M,-L
(b) For a second example1 we consider a class of Gaussian proc-

esses whose covariance functions are actually Green's functions of

certain simple boundary value problems.

It is necessary and sufficient in order that r{s, t) defined for O^s,

t ^ 1 be the covariance function of a Gaussian process {X{t), 0 g t g 1}

that
(i) r{s, t)=r{t, s);

(ii) if h, t2, • • ■ , tnG [0, 1 ], then {r{tit t¡)) is a non-negative definite

matrix.

In case r{s, t) has the form (3) where both u{t) and v{t) are non-

negative for 0 5=¿^1, these two conditions can be reduced to just

(iii) if 0^ti<t2^l, then u{t2)v{h) —u{h)v{t2) is non-negative.

To verify this last statement we need only mention that if r{s, t)

has the form (3), (i) is automatically satisfied while the determinant

of {r{ti, t¡)) can be explicitly evaluated:

1 Some of the results here are taken from the author's doctoral dissertation which

was written under the guidance of Professor Monroe Donsker at the University of

Minnesota.

í ^ t.
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n

| {r{tit i,)) |   = u{h)v{tn) II {<ti)v{ti-i) - u{ti_i)v{U)}.
i-2

If (iii) holds the determinant of {r{U, /,•)) is non-negative for any

choice of h, ■ • • , tnG[0, l]. This shows (see [5, p. 103]) that

{r{ti, tj)) is non-negative definite. On the other hand, if (ii) holds for

r{s, t) of the form (3), then the implications of (ii) in the case

0^h<t2^l give (iii).

We now show how covariance functions which factor like (3) may

come from certain differential systems.

Theorem 2. Let p{s)>0, q{s) ̂ 0, and p'{s) be continuous functions

on OíSsíSI, and let h and H be non-negative extended real-valued num-

bers. If

Id (       dy)
-{#W-}-5W?-o.

(9)
y(0) - hy'{0) = 0,

y{i) + 27/(1) = 0

is incompatible, then the Green's function r{s, t) {see [2, p. 304]) is a

covariance function of a Gaussian process.

Proof. It is shown in the reference above that the Green's function

of system (9) has the form (3) where u{s) and v{s) are linearly inde-

pendent solutions of the differential equation and satisfy, respec-

tively, the boundary conditions at s = 0 and j = 1. We must show that

r{s, t) is non-negative and that u{t)v{s)— u{s)v{t) ^0 for s^t.

To show that r{s, t) is non-negative write

p{s)u'{s) - p{0)u'{0) =  f u{x)q{x)dx.
Jo

By the non-negativity of p{s) and q{s) we deduce that u{s) cannot

change sign in the interval O^s^l and is increasing or decreasing

according as it is positive or negative. Similarly we deduce that v{s)

does not change sign in the interval 0 ̂  s ^ 1 and is increasing or de-

creasing according as it is negative or positive. Suppose for a while

that u{t)v{s) —u{s)v{t) is positive whenever t>s. If u{s)v{t) is nega-

tive, then either u{s) is positive and v{t) is negative or vice-versa.

Since either case is handled in the same way we consider only u{s)

positive and v{t) negative. In that case t>s implies u{t)v{t) ^u{s)v{t)

<u{t)v{s) which contradicts the fact that v{t) is increasing in t. Thus

u{s)v{t) is non-negative for 0^s, íál.

To prove that u{t)v{s) —u{s)v{t) is positive for t>s we write
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P(t){u'(t)v(s) - u(s)v'(t)} -1

(10)
=  I    q(x){u(x)v(s) — v(x)u(s)}dx.

For t in the neighborhood of s the right-hand side of (10) is very

small. Thus the derivative of u(t)v(s)—u(s)v(t) with respect to t

(fixed but arbitrary s) is positive for t>s so that the positivity of

u(t)v(s) —u(s)v(t) (t>s) is verified. This completes the proof of the

theorem.

Now let {X(t), O^/^l} be a Gaussian stochastic process whose

covariance function is the Green's function of (9). By the definition

of the Green's function u'(t)v(t)—u(t)v'(t) = l/p(t) so that the corol-

lary to Theorem 1 states that

(11) lim  fl\x(—) - x(-^-X] =  f  -dt
»-- til    W \   2»   /J      J,   p(t)

with probability one. For an explicit example take the system (9)

where p(s) = 1, and q(s) =h = H=0. The system is incompatible and

the Green's function is

r(s, t) —  <
lid - s),

set,

s^l.

The Gaussian process with this covariance function and mean func-

tion zero has been the subject of considerable study by Doob [3] and

others. We have immediately for this process

It is easy to see that the Wiener process is another explicit example of

Theorem 2 and (11).
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