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BroOKLYN COLLEGE

NOTE ON LINEAR FORMS
J. B. ROBERTS

1. There has been some interest in solutions to the equation
* n = %o + o121 + -+ - + @2,

where the a; are fixed positive integers with gcd=1 and the x; are
non-negative integers. In particular the question of finding the
smallest # for which all greater integers have a solution has been
investigated to some extent [1; 2]. It seems that the solution for
s=1 has been known for some time but that the problem in general
remains unsolved for s>1. In the paper of A. Brauer cited in the
bibliography various upper bounds for the smallest # are given and
the actual value of the smallest # is determined for the ¢; consecutive
integers. The main result of this paper is the determination of this
smallest #» when the a; are in arithmetical progression.
2. Our investigation then is with the linear form

F = apxo+ -+ + ...

Throughout this paragraph we assume 2 < ao,gcd a: =1 and a¢; =a,+jd.
Thus the a; are in arithmetical progression. Then we have the

THEOREM. F represents all n= N where

N= ([a" — 2]+ 1>-a0 4+ (d— 1)@ —1)

S

with non-negative x; and does not so represent N —1.
The proof of this result breaks down into a series of five lemmas.

LeEmMMA 1. The only integers represented by F when xo+ - - - +x.=m
are mao, mao+d, mao+2d, - - -, mao+msd.

ProorF. F represents mao for xo=m, other x;=0. If F represents
mao+kd with Y 5 x;=m and k <ms then x;>0 for some i <s. In the
representation of mao+kd replace xo, - - -, %i, Xi1, -, X by
%o, * + +, %i—1, xipn+1, - - -, x.. Now F represents mao+ (k+1)d.
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Smallest is clearly ma,. By induction this gives mao+kd for k <ms.
But largest is mao+msd.
DEFINITION. [x |+ =the smallest integer =x.

LEMMA 2. Let 1=r=d and j,=max (0, [(ao—rs—1)ds]*). Then
all numbers = (r+j.d)ao which are congruent to rao modulo d are repre-
sented by F.

Proor. Every number represented by F has the form ao Yy x;
+d >_% ix;. Hence those with the property of being =ra, (mod d) are
those with ao )_s x;=rao (mod d). Since (a0, d) =1 this is equivalent
to Y sx;=r (mod d). Suppose m = ) 4 x;=r (mod d). Then m =r-+jd.
Now the largest number represented by F for this m is clearly ma,
= (r+jd)(ao+sd). The next larger number represented by F which
is =ra, (mod d) is m’a; where m’ =m-+d. Hence the next larger num-
ber will be (m+d)as=(r+(j+1)d)ao. By Lemma 1 we have with
Y x;=m all the numbers ma,, - - - , ma, and only those represented
by F. Similarly for Y x;=m-+d=m' we have only ma, - - - , m'a,
represented by F. The necessary and sufficient condition that there
be no numbers which are =ra; (mod d) between the largest of
mao, - - -, ma, which is ma,= (r+jd)(a0+sd) and the smallest of
m'a,, - - -, m’a, which is m’as = (r+(j+1)d)a, is that (r+jd) (ae+sd)
4+d=(r+(j+1)d)as. This holds if and only if rs+jsd+1=a.. If
rs+1=ao then we can take j=0=j,. Otherwise j=(ao—rs—1)/ds
and so the smallest integral value of j, denoted by j,, is the smallest
integer =(ao—rs—1)/ds. Hence j,=max (0, [(@o—rs—1)/ds]?).
Since the condition is necessary and sufficient we shall miss the num-
ber (r+j.d)ao—d.

By allowing 7 to run through the numbers 1, 2, - - -, d we shall
get d sets of numbers as follows, where Q,= (r+j,d)ao.
Qf’Qi+d’Qi+2d”“; j=11213""1d~

All of these numbers are represented by F by Lemma 2. Also by
Lemma 2 we know that Q;—d is not represented by F for any
1=1, - - -, d. Since Q;=1a, (mod d) we see that any set of d numbers,
one from each row, will give a complete set of residues modulo d.
Hence no two numbers in the above array are the same. Now if we
let Q =max {Q;},i=1, -+ +,d, wesee that if N=Q then N is repre-
sented by F. In fact for N=Q—d+1 we have N represented by F
and we do not have Q —d represented by F. Hence our desired small-
est n is just Q—d+1.

What remains is to show that Q—d+41=N where N is as given in
the theorem. ’
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LEmMMA 3. The Q above is equal to (k-+1td)a, where
t = max (0, [(a0 — s — 1)/ds]")
and

§ = {d ift=0
B largestof 1, -+, d  such that [(ao—ks—1)/ds]* =t if t>40.

ProoF. Q =max {Qi} =max ((1+jd)as, Q+jd)ao, - -,
(d+jad)as). Remembering that 7, =max (0, [(@o—rs—1)/ds]*) we see
that if £=0 then [(@o—s—1)/ds]* <0 and hence [(ao—rs—1)/ds]*
=<0 so that §,=0 for all r=1, - - -, d. Hence Q=dao. On the other
hand if 0 then there is a largest & from 1 to d for which
[(@—s—1)/ds]*=[(ao—ks—1)/ds]*. For the corresponding term
of Q we have

(k + jid)ao = (& + [(a0 — ks — 1)/ds]*d)a
= (k+ [(a0 — s — 1)/ds]*d)as = (k + td)an.

This term is certainly larger than (j+[(av—js—1)/ds]*d)a, for
1<j<k. Also for j >k we have [(ao—js—1)/ds]* < [(@ao—ks—1)/ds]*+
and so ([(@o—js—1)/ds]*+1)d<[(ao—ks—1)/ds]*d=td. Hence
[(@o—js—1)/ds]*d < (t—1)d so

G+ [(@o—js—1)/ds|*d)ao < G+ (t—1)d)ao = ((j —d) +td)ao < (k+td)ao.
This completes the proof of the lemma.

LEMMA 4. F represents all numbers n=N where N=(k+id)ao
—d-+1, and k, t are as defined in Lemma 3, but F does not represent
N-—1.

Proor. This lemma is just a restatement of the remarks preceding
Lemma 3 combined with that lemma.

LEMMA 5. For t, k defined as in Lemma 3 we have k+td = [(a0—2)/s]
+d.

PRrOOF. (a) t=0. By definition of ¢ we see that [(@o—s—1)/ds]* <0
s0 s+1=ao and ay—2 <s—1<s. Therefore [(as—2)/s]=0. Also, by
definition of £ we have k=d. Hence k+td=d=[(a0—2)/s]+d.

(b) t5#0. Suppose that

do—S—l

0 ds

= I-I-;i'l-; I an integer, 0 = j < ds.
s
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Then A

ag— ks — 1 j k-1
2 Y (= Sy —
@ ds +ds d
and (k+1) k

Ay — s—1 j

3 =]+ = — —.
®) ds +ds d

Also by definition of £ we know

@ [ao -5 - l:l"' _ [ao — ks — 1]+> [ao —(k+1)s — 1]+.
ds ds ds
We now have two cases; first with =0 and secondly with j#0.

(i) 7=0. From (1), (2),and (4) we see that (k—1)/d <1 or k<d+1.
Also from (1), (3), and (4) we have k=d. Hence k=d. Now [(20—2)/s]
=[(@ao—s—1)/s+(1—1/s)]=(ao—s—1)/s since (ao—s—1)/s=dl
which is an integer while (1—1/s)<1. Thus k4td=d
+[(@o—s—1)/ds]*d = [(@o—2)/s]+d.

(ii) j0. From (1)-(4) we deduce that j/ds—(k—1)/d>0 and
j/ds—k/d=<0. Hence k<j/s+1 and k=j/s. Therefore k= [j/s]*.
Now [(@o—s—1)/ds]+=[I+j/ds]*=I+1=(ao—s—1)/ds—j/ds+1.
Hence k+4td=k+[(ao—s—1)/ds]*d=[j/s]*+(ao—s—1)/s—j/s+d.
Now either j/s is an integer or not. We suppose first that it is an integer.
Then [j/s]+=3j/s. Since I =(ag—s—1)/ds—j/ds we have (ao—s—1)/s
=dI+j/s which is an integer. Thus [(@o—2)/s]=[(ae—s—1)/s
+@1—-1/s)]=(ao—s—1)/s and k+td=(as—s—1)/s+d=[(as—2)/s]
+d. We now suppose that j/s is not an integer but that it
is equal to J+4/s where J is an integer and 0<i<s. In this case
[i/s]*=J+1=j/s—i/s+1. Therefore k+td=[j/s]t+(ao—s—1)/s
—j/s+d=1—i/s4+(as—s—1)/s+d. Now (a—s—1)/s=dI+j/s
=dI+J+i/s so [(@—2)/s]=[(@—s—1)/s+(1—1/s)]=[dI+T
+(#—1)/s+1]. Since 1 £i<s—1 we know 0 = (—1/s) <1. Therefore
[(@—2)/s]=dI+T+1=(ao—s—1)/s—i/s+1=k+td—d and so
[(@o—2)/s]+d=F+td. This completes the proof of the lemma.

Putting Lemmas 4 and 5 together gives us the proof of the theorem.

3. In §2 we have disposed of the problem of §1 when the a; are in
arithmetic progression. The simplest case not covered seems to be
that where the a; are general but s=2. Even this case seems quite
difficult however. We state the following result which is a specializa-
tion of the case just mentioned.

Given F=axo+(e+1)x1+(a+2)xs, 2>2, and the x; to be non-
negative then the smallest N for which all = N are represented by F
but with N —1 not so represented is given by
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(a) ((a+1)/2)a+(z—3)a when a=z—1 (mod 2) and ¢ =22—52+3,
®) [(e+1)/z](a+2)+(z—3)a
when a#z—1 (mod 2) and a=22—4z+42.

We omit the proof of this result as it is rather long.

It is not hard to find the desired N for specific triples of numbers.
For instance when ao, a&1=a0+2, a:=ao+3 we find the value of N
to be [x/3] -x+2-+x. If the largest of ao, a1, a; is sufficiently larger
than the other two and those two are relatively prime then the N is
easily determined also. In fact if @y<ai1<as and (a0, a1)=1 and
a:> (ap—1)(a1—1) —ao then N=(a¢—1)(a1—1).
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REED COLLEGE

ON THE INFINITUDE OF PRIMITIVE -NONDEFICIENTS
HERBERT A. BERNHARD

H. N. Shapiro has defined [1] a k-nondeficient as an integer n
which satisfies

(1) aln)/n =k (% real)

where o(n) is the sum of the divisors of #. Integers » which do not
satisfy (1) are called k-deficient. A primitive k-nondeficient is defined
as a k-nondeficient, all of whose proper divisors are k-deficient. In
the same paper, Shapiro shows that, in order for an infinite number
of primitive k-nondeficients to exist, it is necessary that k be of the
form

ai+1

nopt -1 g
(2)
eI-Ix (ps — Dpg "-ImI+1 pi— 1

or, written another way,
a;,
I’-"I a(pi) I"I bs
il PE dmmp Di— 1

where p1, p2, ps, * + -, Pn are distinct primes and 0 <m <. In this
note we show that, for every & of the form (2), an infinite number of
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