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NOTE ON LINEAR FORMS

J. B. ROBERTS

1. There has been some interest in solutions to the equation

(*) ra = a0x0 + aiXi + • • • + a,x,

where the a¿ are fixed positive integers with gcd = 1 and the x¿ are

non-negative integers. In particular the question of finding the

smallest ra for which all greater integers have a solution has been

investigated to some extent [l; 2]. It seems that the solution for

5 = 1 has been known for some time but that the problem in general

remains unsolved for 5>1. In the paper of A. Brauer cited in the

bibliography various upper bounds for the smallest w are given and

the actual value of the smallest ra is determined for the a,- consecutive

integers. The main result of this paper is the determination of this

smallest ra when the a,- are in arithmetical progression.

2. Our investigation then is with the linear form

F = aoxo + • • • + a,Xs-

Throughout this paragraph we assume 2 = ao, gcd a¿ = 1 and a¡ = a0+jd.

Thus the ai are in arithmetical progression. Then we have the

Theorem. F represents all n — N where

N = (p^-1 + l)-«o + id - l)(flo - 1)

with non-negative x¿ and does not so represent N—l.

The proof of this result breaks down into a series of five lemmas.

Lemma 1. The only integers represented by F when xo+ ■ ■ ■ +x, = m

are mao, mao-{-d, mao-\-2d, • • • , mao+msd.

Proof. F represents mao for x0 = m, other x< = 0. If F represents

mao + kd with 2ZSx, = w and k<ms then xt>0 for some i<s. In the

representation of ma0+kd replace x0, • • • , x,-, xl+i, • • • , x, by

xo, ■ • • , Xi—1, x,+1+l, • ■ ■ , x,. Now F represents mao + ik + l)d.
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Smallest is clearly maa. By induction this gives mao+kd for k^ms.

But largest is mao+msd.

Definition. [x]+ = the smallest integer ex.

Lemma 2. Let l^r^d and jr = max (0, [(a0—rs — l)ds]+). Then

all numbers = (r-\-jrd)ao which are congruent to rao modulo d are repre-

sented by F.

Proof. Every number represented by F has the form <z0 Eo *<

+d Eô ixi- Hence those with the property of being =-rao (mod d) are

those with a0 Eó Xi=ra0 (mod d). Since (a0, d) = l this is equivalent

to Eu^i —r (mod d). Suppose m = Eó^¿—»* (mod á). Thenra=r+_/'á.

Now the largest number represented by F for this m is clearly ma,

= (r-\-jd)(ao-\-sd). The next larger number represented by F which

is =rao (mod d) is m'ao where m' = m-\-d. Hence the next larger num-

ber will be (m+d)ao = (rJr(j + l)d)ao. By Lemma 1 we have with

y£lXi = m all the numbers ma0, ■ • ■ , ma, and only those represented

by F. Similarly for ^lXi = m-\-d = m' we have only m'ao, • • • , m'a,

represented by F. The necessary and sufficient condition that there

be no numbers which are = rao (mod d) between the largest of

mao, • ■ ■ , ma, which is ma, = (r-\-jd)(ao-\-sd) and the smallest of

m'ao, • ■ • , m'a, which is m'ao = (r-\-(j-\-l)d)ao is that (r+jd)(a0+sd)

-\-d~Sz.(r-\-(j-\-l)d)ao. This holds if and only if rs+jsd + l i=ao. If

fs + l=a0 then we can take j = 0=jT. Otherwise j^(aa—rs — i)/ds

and so the smallest integral value of j, denoted by jT, is the smallest

integer ^ (ao — rs — l)/ds. Hence j'r = max (0, [(ao — rs — l)/ds]+).

Since the condition is necessary and sufficient we shall miss the num-

ber (r+jrd)ao — d.

By allowing r to run through the numbers 1, 2, • • • , d we shall

get d sets of numbers as follows, where Qr = (r-\-jrd)ao.

Qi, Qi + d, Qf + 2d, ■ • • ;      j = 1, 2, 3, • • • , d.

All of these numbers are represented by F by Lemma 2. Also by

Lemma 2 we know that Qi — d is not represented by F for any

i = l, ■ ■ ■ , d. Since Qi = iao (mod d) we see that any set of d numbers,

one from each row, will give a complete set of residues modulo d.

Hence no two numbers in the above array are the same. Now if we

let Q = max {Q,■}, i = 1, • • • , d, we see that if N^Q then N is repre-

sented by F. In fact for N^Q — d-\-l we have N represented by F

and we do not have Q — d represented by F. Hence our desired small-

est « is just Q—d + l.

What remains is to show that Q — d+1 = N where N is as given in

the theorem.
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Lemma 3. The Q above is equal to (k-\-td)a0 where

t = max (0, [(a0 - s - í)/ds]+)

and

(difl = 0
k =   \ r t

{largest of 1, • • • , d      such that [iao — ks — l)/ds\+ = t if t^O.

Proof. Q = max {Q,} = max ((l+jid)a0, (2+j2d)ao, • • • ,

id+jd(l)ao). Remembering that jT~max (0, [ia0—rs — l)/ds]+) we see

that if Z = 0 then [(a0-s-l)/ds]+ = 0 and hence [ia0-rs-i)/ds]+

= 0 so that jr = 0 for all r = l, • • • , d. Hence Q=dao. On the other

hand if Z^O then there is a largest k from 1 to á for which

[(a0— 5 — l)/a*5]+= [(a0 — ks — \)/ds}+. For the corresponding term

of Q we have

ik + jkd)ao = ik + [(a0 — ks — l)/ds]+d)a0

= ik + [(a0 - 5 - l)/ds]+d)ao = ik + td)a0.

This term is certainly larger than ij+[iao—js — l)/ds]+d)aa for

l^j<k. Also forj>¿ we have [iao—js — l)/ds]+< [ia0—ks — l)/ds]+

and so i[ia0-js-l)/ds]++l)d= [ia0-ks-l)/ds]+d = td. Hence

[(ao-^-lVckJ+dgtZ-l^ so

(j+[(ao-js-\)/ds]+d)aoú(j+(t-\)d)ao = ((j-d)+td)ao<(k+td)ao.

This completes the proof of the lemma.

Lemma 4. F represents all numbers n = N where N=(k+td)a0

—a*+l, and k, t are as defined in Lemma 3, but F does not represent

N-Í.

Proof. This lemma is just a restatement of the remarks preceding

Lemma 3 combined with that lemma.

Lemma 5. For t, k defined as in Lemma 3 we have k+td = [(ao — 2)/5]

+d.

Proof, (a) Z = 0. By definition of Zwe see that [(aa — s — l)/ds]+ = 0

so 5+1 ^a0 and a0 —2^5 —1<5. Therefore [(ao — 2)/5] = 0. Also, by

definition of k we have k=d. Hence k-\-td = d= [(ao —2)/5]+d.

(b) Z?^0. Suppose that

a0 — 5 — 1 j
(1) -= I -\->    /an integer,   0 ^ j < ds.

ds ds
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Then
ao — ks — I j       k — 1

(2)                           -= / + —-
ds ds         d

and
ao - (k + l)s - 1 _ j       k_

ds ds       d

Also by definition of k we know

ao — s — 1"|+      Too — ks — 1~|+      Too — (k + l)s — 1"|+
(4)

[ao — s — 1~\+     \~ao — ks — 1~1+      fa—*—J " HS-J > L-
<fe

We now have two cases; first with j = 0 and secondly with j^O.

(i) j-Q. From (1), (2),and (4) weseethat (k-l)/d<l ork<d+l.

Also from (1), (3), and (4) wehave ife = d. Hence k=d. Now [(a0 — 2)/s]

— [(ao — s — l)/s + (l — l/s)] = (ao—s — l)/s since (ao— s — l)/s = dl

which is an integer while (1 — 1/j)<1. Thus k-\-td = d

+ [(ao-s-l)/ds]+d=[(aB-2)/s]+d.

(ii) jVO. From (l)-(4) we deduce that j/ds-(k-l)/d>0 and

j/ds — k/d^O. Hence k<j/s + l and k^j/s. Therefore k=\j/s]+.

Now [(aa-s-l)/ds]+= [l+j/ds]+ = I+l = (a0-s-l)/ds-j/ds+l.

Hence k+td = k+[(a0-s-l)/ds]+d= [j/s]++(ao-s-l)/s-j/s+d.

Now either j/s is an integer or not. We suppose first that it is an integer.

Then [j/s]+=j/s. Since I = (ao—s — l)/ds—j/ds we have (a0—s — l)/s

= dl+j/s which is an integer. Thus [(ao — 2)/s] = [(flo-s — l)/s

+ (l-l/í)] = (o0-í-l)/jand k+td = (a0-s-l)/s+d=[(ao-2)/s]

+d. We now suppose that j/s is not an integer but that it

is equal to J-\-i/s where / is an integer and 0<i<s. In this case

[j/s]+ = J+l=j/s-i/s + l. Therefore k+td= [j/s]++(a0-s-l)/s

—j/s+d = l—i/s + (a0—s — l)/s-\-d. Now (a0 — s — l)/s = dl+j/s

= dI+J+i/s so [(ao-2)/s]=[(ao-s-l)/s + (l-l/s)]=[dI+J

+ (* — l)/s + l]. Since 1 =i^5 — 1 we knowO^(i — l/s) <1. Therefore

[(ao-2)/s]=dI+J+l = (a0-s-l)/s-i/s+l=k+td-d and so

[(ao — 2)/s]+d = k+td. This completes the proof of the lemma.

Putting Lemmas 4 and 5 together gives us the proof of the theorem.

3. In §2 we have disposed of the problem of §1 when the a¿ are in

arithmetic progression. The simplest case not covered seems to be

that where the a¡ are general but s = 2. Even this case seems quite

difficult however. We state the following result which is a specializa-

tion of the case just mentioned.

Given F = axo + (a + l)xi + (a+z)x2, z>2, and the x¿ to be non-

negative then the smallest N for which all « à N are represented by F

but with N—Í not so represented is given by
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(a) ((a+l)/z)a+(z — 3)a   when a=z — 1 (mod z) and a = z2—5z+3,

(b) [(a + l)/z](a+z) + (z-3)a

when  ajàz — 1   (mod  z)   and  a = z2—iz-\-2.

We omit the proof of this result as it is rather long.

It is not hard to find the desired N for specific triples of numbers.

For instance when a0, ai=ao+2, a2 = ao+3 we find the value of N

to be [x/3]-x + 2+x. If the largest of ao, ai, 02 is sufficiently larger

than the other two and those two are relatively prime then the N is

easily determined also. In fact if ao<ai<as and (ao, ai) = l and

a2>(ao — l)(ai — 1)— ao then N=(a0 — l)(ai — 1).
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ON THE INFINITUDE OF PRIMITIVE ¿-NONDEFICIENTS

HERBERT A. BERNHARD

H. N. Shapiro has defined  [l] a ¿-nondeficient as an integer ra

which satisfies

(1) a(n)/n ê * (k real)

where cr(ra) is the sum of the divisors of ra. Integers ra which do not

satisfy (1) are called ¿-deficient. A primitive ¿-nondeficient is defined

as a ¿-nondeficient, all of whose proper divisors are ¿-deficient. In

the same paper, Shapiro shows that, in order for an infinite number

of primitive ¿-nondeficients to exist, it is necessary that k be of the

form

(2) ft *       n-*-
ti (pi - Y)PV Ä Pi - 1

or, written another way,

iï *(P">   TT       t<

,=1   pf     <_m+i pi — 1

where pi, p2, p¡, • • • , pn are distinct primes and 0 =m —n. In this

note we show that, for every k of the form (2), an infinite number of
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