7. E. Snapper, Periodic transformations of affine and projective geometries, Canadian Journal of Mathematics vol. 2 (1950) pp. 149-151.

8. O. Veblen and W. H. Bussey, *Finite projective geometries*, Trans. Amer. Math. Soc. vol. 7 (1906) pp. 241-259.

BROOKLYN COLLEGE

NOTE ON LINEAR FORMS

J. B. ROBERTS

1. There has been some interest in solutions to the equation

$$(*) n = a_0x_0 + a_1x_1 + \cdots + a_sx_s$$

where the a_i are fixed positive integers with gcd=1 and the x_i are non-negative integers. In particular the question of finding the smallest n for which all greater integers have a solution has been investigated to some extent [1; 2]. It seems that the solution for s=1 has been known for some time but that the problem in general remains unsolved for s>1. In the paper of A. Brauer cited in the bibliography various upper bounds for the smallest n are given and the actual value of the smallest n is determined for the a_i consecutive integers. The main result of this paper is the determination of this smallest n when the a_i are in arithmetical progression.

2. Our investigation then is with the linear form

$$F = a_0 x_0 + \cdots + a_s x_s$$

Throughout this paragraph we assume $2 \leq a_0$, $gcd a_i = 1$ and $a_j = a_0 + jd$. Thus the a_i are in arithmetical progression. Then we have the

THEOREM. F represents all $n \ge N$ where

$$N = \left(\left[\frac{a_0 - 2}{s} \right] + 1 \right) \cdot a_0 + (d - 1)(a_0 - 1)$$

with non-negative x_i and does not so represent N-1.

The proof of this result breaks down into a series of five lemmas.

LEMMA 1. The only integers represented by F when $x_0 + \cdots + x_s = m$ are $ma_0, ma_0+d, ma_0+2d, \cdots, ma_0+msd$.

PROOF. F represents ma_0 for $x_0 = m$, other $x_i = 0$. If F represents $ma_0 + kd$ with $\sum_{i=0}^{s} x_i = m$ and k < ms then $x_i > 0$ for some i < s. In the representation of $ma_0 + kd$ replace $x_0, \dots, x_i, x_{i+1}, \dots, x_s$ by $x_0, \dots, x_i - 1, x_{i+1} + 1, \dots, x_s$. Now F represents $ma_0 + (k+1)d$.

1956]

Received by the editors June 28, 1955.

Smallest is clearly ma_0 . By induction this gives ma_0+kd for $k \leq ms$. But largest is ma_0+msd .

DEFINITION. $[x]^+$ = the smallest integer $\geq x$.

LEMMA 2. Let $1 \leq r \leq d$ and $j_r = \max(0, [(a_0 - rs - 1)ds]^+)$. Then all numbers $\geq (r+j_rd)a_0$ which are congruent to ra_0 modulo d are represented by F.

PROOF. Every number represented by F has the form $a_0 \sum_{i=1}^{s} x_i$ $+d\sum_{i=1}^{s} ix_{i}$. Hence those with the property of being $\equiv ra_{0} \pmod{d}$ are those with $a_0 \sum_{i=1}^{s} x_i \equiv ra_0 \pmod{d}$. Since $(a_0, d) = 1$ this is equivalent to $\sum_{i=1}^{s} x_i \equiv r \pmod{d}$. Suppose $m = \sum_{i=1}^{s} x_i \equiv r \pmod{d}$. Then m = r + jd. Now the largest number represented by F for this m is clearly ma_* $=(r+jd)(a_0+sd)$. The next larger number represented by F which is $\equiv ra_0 \pmod{d}$ is $m'a_0$ where m' = m + d. Hence the next larger number will be $(m+d)a_0 = (r+(j+1)d)a_0$. By Lemma 1 we have with $\sum x_i = m$ all the numbers ma_0, \cdots, ma_s and only those represented by F. Similarly for $\sum x_i = m + d = m'$ we have only $m'a_0, \dots, m'a_s$ represented by F. The necessary and sufficient condition that there be no numbers which are $\equiv ra_0 \pmod{d}$ between the largest of ma_0, \dots, ma_s which is $ma_s = (r+jd)(a_0+sd)$ and the smallest of $m'a_0, \cdots, m'a_s$ which is $m'a_0 = (r+(j+1)d)a_0$ is that $(r+jd)(a_0+sd)$ $+d \ge (r+(j+1)d)a_0$. This holds if and only if $rs+jsd+1 \ge a_0$. If $rs+1 \ge a_0$ then we can take $j=0=j_r$. Otherwise $j\ge (a_0-rs-1)/ds$ and so the smallest integral value of j, denoted by j_r , is the smallest integer $\geq (a_0 - rs - 1)/ds$. Hence $j_r = \max(0, [(a_0 - rs - 1)/ds]^+)$. Since the condition is necessary and sufficient we shall miss the number $(r+j_r d)a_0-d$.

By allowing r to run through the numbers 1, 2, \cdots , d we shall get d sets of numbers as follows, where $Q_r = (r+j_r d)a_0$.

$$Q_j, Q_j + d, Q_j + 2d, \cdots; \quad j = 1, 2, 3, \cdots, d.$$

All of these numbers are represented by F by Lemma 2. Also by Lemma 2 we know that $Q_i - d$ is not represented by F for any $i=1, \dots, d$. Since $Q_i \equiv ia_0 \pmod{d}$ we see that any set of d numbers, one from each row, will give a complete set of residues modulo d. Hence no two numbers in the above array are the same. Now if we let $Q = \max{\{Q_i\}}, i=1, \dots, d$, we see that if $N \ge Q$ then N is represented by F. In fact for $N \ge Q - d + 1$ we have N represented by Fand we do not have Q - d represented by F. Hence our desired smallest n is just Q - d + 1.

What remains is to show that Q-d+1=N where N is as given in the theorem.

466

$$t = \max(0, [(a_0 - s - 1)/ds]^+)$$

and

$$k = \begin{cases} d \text{ if } t = 0\\ largest \text{ of } 1, \cdots, d & such that [(a_0 - ks - 1)/ds]^+ = t \text{ if } t \neq 0. \end{cases}$$

PROOF. $Q = \max \{Q_i\} = \max ((1+j_1d)a_0, (2+j_2d)a_0, \cdots, (d+j_dd)a_0)$. Remembering that $j_r = \max (0, [(a_0-rs-1)/ds]^+)$ we see that if t=0 then $[(a_0-s-1)/ds]^+ \leq 0$ and hence $[(a_0-rs-1)/ds]^+ \leq 0$ so that $j_r=0$ for all $r=1, \cdots, d$. Hence $Q=da_0$. On the other hand if $t\neq 0$ then there is a largest k from 1 to d for which $[(a_0-s-1)/ds]^+ = [(a_0-ks-1)/ds]^+$. For the corresponding term of Q we have

$$(k + j_k d)a_0 = (k + [(a_0 - ks - 1)/ds]^+ d)a_0$$

= $(k + [(a_0 - s - 1)/ds]^+ d)a_0 = (k + td)a_0.$

This term is certainly larger than $(j+[(a_0-js-1)/ds]^+d)a_0$ for $1 \le j < k$. Also for j > k we have $[(a_0-js-1)/ds]^+ < [(a_0-ks-1)/ds]^+$ and so $([(a_0-js-1)/ds]^++1)d \le [(a_0-ks-1)/ds]^+d = td$. Hence $[(a_0-js-1)/ds]^+d \le (t-1)d$ so

$$(j+\lfloor (a_0-js-1)/ds \rfloor^+ d)a_0 \leq (j+(t-1)d)a_0 = ((j-d)+td)a_0 < (k+td)a_0.$$

This completes the proof of the lemma.

LEMMA 4. F represents all numbers $n \ge N$ where $N = (k+td)a_0$ -d+1, and k, t are as defined in Lemma 3, but F does not represent N-1.

PROOF. This lemma is just a restatement of the remarks preceding Lemma 3 combined with that lemma.

LEMMA 5. For t, k defined as in Lemma 3 we have $k+td = [(a_0-2)/s] + d$.

PROOF. (a) t=0. By definition of t we see that $[(a_0-s-1)/ds]^+ \leq 0$ so $s+1 \geq a_0$ and $a_0-2 \leq s-1 < s$. Therefore $[(a_0-2)/s]=0$. Also, by definition of k we have k=d. Hence $k+td=d=[(a_0-2)/s]+d$.

(b) $t \neq 0$. Suppose that

(1)
$$\frac{a_0 - s - 1}{ds} = I + \frac{j}{ds}, \quad I \text{ an integer, } 0 \leq j < ds.$$

1956]

J. B. ROBERTS

Then

(2)
$$\frac{a_0 - ks - 1}{ds} = I + \frac{j}{ds} - \frac{k - 1}{d}$$

and

(3)
$$\frac{a_0 - (k+1)s - 1}{ds} = I + \frac{j}{ds} - \frac{k}{d} \cdot$$

Also by definition of k we know

(4)
$$\left[\frac{a_0-s-1}{ds}\right]^+ = \left[\frac{a_0-ks-1}{ds}\right]^+ > \left[\frac{a_0-(k+1)s-1}{ds}\right]^+.$$

We now have two cases; first with j=0 and secondly with $j\neq 0$.

(i) j=0. From (1), (2), and (4) we see that (k-1)/d < 1 or k < d+1. Also from (1), (3), and (4) we have $k \ge d$. Hence k = d. Now $[(a_0-2)/s] = [(a_0-s-1)/s+(1-1/s)] = (a_0-s-1)/s$ since $(a_0-s-1)/s = dI$ which is an integer while (1-1/s) < 1. Thus $k+td = d + [(a_0-s-1)/ds]^+d = [(a_0-2)/s] + d$.

(ii) $i \neq 0$. From (1)-(4) we deduce that j/ds - (k-1)/d > 0 and $j/ds - k/d \leq 0$. Hence k < j/s + 1 and $k \geq j/s$. Therefore $k = [j/s]^+$. Now $[(a_0-s-1)/ds]^+ = [I+j/ds]^+ = I+1 = (a_0-s-1)/ds - j/ds+1.$ Hence $k+td = k + [(a_0 - s - 1)/ds] + d = [j/s] + (a_0 - s - 1)/s - j/s + d$. Now either i/s is an integer or not. We suppose first that it is an integer. Then $[j/s]^+ = j/s$. Since $I = (a_0 - s - 1)/ds - j/ds$ we have $(a_0 - s - 1)/s$ =dI+i/s which is an integer. Thus $[(a_0-2)/s] = [(a_0-s-1)/s]$ $+(1-1/s) = (a_0 - s - 1)/s$ and $k + td = (a_0 - s - 1)/s + d = [(a_0 - 2)/s]$ +d. We now suppose that j/s is not an integer but that it is equal to J+i/s where J is an integer and 0 < i < s. In this case $[j/s]^+ = J + 1 = j/s - i/s + 1$. Therefore $k + td = [j/s]^+ + (a_0 - s - 1)/s$ $-j/s+d=1-i/s+(a_0-s-1)/s+d$. Now $(a_0-s-1)/s=dI+j/s$ =dI+J+i/s so $[(a_0-2)/s] = [(a_0-s-1)/s+(1-1/s)] = [dI+J]$ +(i-1)/s+1]. Since $1 \le i \le s-1$ we know $0 \le (i-1/s) < 1$. Therefore $[(a_0-2)/s] = dI + J + 1 = (a_0-s-1)/s - i/s + 1 = k + td - d$ and so $[(a_0-2)/s]+d=k+td$. This completes the proof of the lemma.

Putting Lemmas 4 and 5 together gives us the proof of the theorem.

3. In §2 we have disposed of the problem of §1 when the a_i are in arithmetic progression. The simplest case not covered seems to be that where the a_i are general but s=2. Even this case seems quite difficult however. We state the following result which is a specialization of the case just mentioned.

Given $F = ax_0 + (a+1)x_1 + (a+z)x_2$, z > 2, and the x_i to be nonnegative then the smallest N for which all $n \ge N$ are represented by F but with N-1 not so represented is given by

[June

468

(a) ((a+1)/z)a+(z-3)a when $a \equiv z-1 \pmod{z}$ and $a \ge z^2-5z+3$,

(b)
$$[(a+1)/z](a+z)+(z-3)a$$

when $a \not\equiv z-1 \pmod{z}$ and $a \geq z^2-4z+2$.

We omit the proof of this result as it is rather long.

It is not hard to find the desired N for specific triples of numbers. For instance when a_0 , $a_1=a_0+2$, $a_2=a_0+3$ we find the value of N to be $\lfloor x/3 \rfloor \cdot x+2+x$. If the largest of a_0 , a_1 , a_2 is sufficiently larger than the other two and those two are relatively prime then the N is easily determined also. In fact if $a_0 < a_1 < a_2$ and $(a_0, a_1) = 1$ and $a_2 > (a_0-1)(a_1-1)-a_0$ then $N=(a_0-1)(a_1-1)$.

BIBLIOGRAPHY

1. A. Brauer, On a problem of partitions, Amer. J. Math. vol. 64 (1942) pp. 299-312.

2. J. B. Roberts, Interaction of cycles, Bulletin of Mathematical Biophysics vol. 10 (1948) pp. 123-129.

REED COLLEGE

ON THE INFINITUDE OF PRIMITIVE k-NONDEFICIENTS

HERBERT A. BERNHARD

H. N. Shapiro has defined [1] a k-nondeficient as an integer n which satisfies

(1)
$$\sigma(n)/n \ge k$$
 (k real)

where $\sigma(n)$ is the sum of the divisors of n. Integers n which do not satisfy (1) are called k-deficient. A primitive k-nondeficient is defined as a k-nondeficient, all of whose proper divisors are k-deficient. In the same paper, Shapiro shows that, in order for an infinite number of primitive k-nondeficients to exist, it is necessary that k be of the form

(2)
$$\prod_{i=1}^{m} \frac{p_i^{\alpha_i+1}-1}{(p_i-1)p_i^{\alpha_i}} \prod_{i=m+1}^{n} \frac{p_i}{p_i-1}$$

. .

or, written another way,

$$\prod_{i=1}^{m} \frac{\sigma(p_i^{\alpha_i})}{p_i^{\alpha_i}} \prod_{i=m+1}^{n} \frac{p_i}{p_i-1}$$

where $p_1, p_2, p_3, \cdots, p_n$ are distinct primes and $0 \le m \le n$. In this note we show that, for every k of the form (2), an infinite number of

1956]

Received by the editors May 26, 1955.