
UNIVERSAL INFINITE PARTIALLY ORDERED SETS

JOHN B. JOHNSTON

Introduction. The purpose of this paper is to construct for each

infinite cardinal K an ^-universal partially ordered set in which

every partially ordered set of cardinality ^ can be embedded. An

^-universal partially ordered set of cardinality 2^ is constructed

for every infinite cardinal fc$. Furthermore, an ^-universal partially

ordered set of cardinality K is constructed for every cardinal fc$

which is the sum of denumerably many smaller cardinals. The exist-

ence for an arbitrary cardinal fc$ of an ^-universal partially ordered

set of cardinality fc< is left an open question and appears to be a

difficult problem.

The ordering relation " < " in a partially ordered set is understood

to be transitive, nonreflexive, and nonsymmetric. The Axiom of

Choice will be assumed throughout this paper. The General Con-

tinuum Hypothesis will be explicitly mentioned when it is used.

1. Totally ordered extensions of partially orderedsets.

Definition:1 Let «GO«. If the functions/: wa—»2 are ordered ac-

cording to first differences, the set 2"« becomes a totally ordered set

which we denote by P(2"«). We shall call a function /: äa—»2 an

a-rational if there exists an ordinal r)(f) <u)a, necessarily unique, such

that f'riif) =1 while f'p = 0 for r]if)<p<ua. In the remainder of this

paper t] will be used exclusively to denote this "terminating" ordinal

of the a-rationals. We denote by Ta the totally ordered suborder of

P(2"«) consisting of the a-rationals.

Theorem 1. Let aÇzOn. Ta is a totally ordered set of cardinality

¿2^«. Let p<aa and let A be any subset of Ta such that for every

fÇ£A, r¡if) <p. Then there exists a iunique) minimal element hiA, p) G Ta

having the properties that r¡[hiA, p) ] =p and hiA, p) >/ in Tafor every

/G-4. If g G Pa with r]ig)<p and g>f in Ta for every /G-4, then

g>hiA, p) in Ta. If a=0 or if the General Continuum Hypothesis

holds, Ta has cardinality \&a.

Received by the editors June 1, 1955.

1 On denotes the class of ordinals. If ¡i is an ordinal, ¡I denotes the class of ordinals

less than ¡i. To show that a function F has a set R for its domain and has its range in a

set S, we write F: R—>S. For particular sets R and S, the set of all functions F: R—>S

is denoted by SR. The image of an element a by a function F is denoted by F'a.
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Proof. (1) Ta = \J{B(y): 77<ua}, where B(r,) = {f: fETa and

v(f) =v} and the 5(77) are disjoint, so that | Ta\ = J2{ |.B(ij)| :ij<ua}.
Now \B(ri)\ =2l'l^2k<«, from which we infer that |ra|g2h«. If

a = 0 or if the General Continuum Hypothesis holds, then |5(r?)|

^Na, and we obtain | Ta\ =N«.

(2) Let p and A satisfy the hypothesis of the theorem. We take

for h(A, p) the unique function k: èa—>2 defined inductively by:

(a) for p<p, k'p = l if and only if there exists an fEA such that

f\p = k\fl and f'p = 1 ;2
(b) k'p = l and k'p = 0 for p<p<aa.

Clearly, kETa and rj(k) =p.

(3) Let fEA. Since 77(f) <p=r¡(k), there exists a first ordinal cap

for which f'a^k'a while/| ë = k\ à. If it were true that/'cr = l >0 = k'cr,

then necessarily a <p and we would have a contradiction of (2). Thus

/'o-=0<l=¿'<rand/<¿in Ta.

(4) Let gETa with 77(g) =r^p=v(k) such that g<k in T«. Then

there exits a first ordinal o-£jp such that g'a = 0 < 1 = k'a while

g\ à = k\ ¿r. Note that not both a=p and r=p.

(a) Suppose that tr<p. Then by (2), k'a = l implies that there

exists an fEA such that /|<r = ¿| à =g\ <r while f'a = k'a = l >0=g'<r.

For this/E-<4 we have/>g in Ta.

(b) Suppose that r<a=p. Then by (2), k'r=g'T = l implies that

there exists an/£^4 such that/| f = k\ T=g\r while f'r = k'r=g'r = l.

Since 77(g) =t, we have g£=/ in F„ for this particular/.

The minimality of h(A, p)=k follows from (a) with r=p. For

gETa with 77(g) <p and g>f in Fa for every fEA, the fact that g>k

in F„ follows from (b) and (a) with r<p, since 77(g) <p implies that

g^¿. This completes the proof of Theorem 1.

If P is a partially ordered set and T a totally ordered set, a bi-

unique function F: P—>T is said to generate a totally ordered extension

of P if for any two elements a and b oí P, a<b in P implies that

F'a < F'b in T. The totally ordered extension generated is the set of

elements of P together with the order relations transferred from T

back to P by the inverse of F. If P is itself a totally ordered set, then

P is similar to the totally ordered set {F'a: aEP} and F is called an

embedding of P in T.

Theorem 2. Let aEOn and let P be any partially ordered set of

cardinality N0 with an imposed well-ordering, P= {p(p): p<coa}. For

vúu«, define Pv= {p(p): p<v}. Let 05jp<<ri=coa and suppose that G:

2 If F is a function and R is a subset of its domain, F\ R denotes the function

.F restricted to the domain R.
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P„—>Ta is any function which generates a totally ordered extension of

Pp in such a manner that for each p(ii) GPP, 17 [G'pip) ]—p. By induction

there exists a unique function F: P„—+Ta such that F\PP = G while

F'piv) =hiAv, v) for p^v<a, where A, = {F'pip): p<v and pip.) <piv)

in P}. We conclude that this function F generates a totally ordered ex-

tension of P„ in such a manner that for each pip) (E.Pc, »7 [F'pip) ] =p.

We denote the function F\ iPc—Pf) by F(G, a).

Proof. (1) Let p, v<p with pip) <piv) in P. Then F'pip) = G'pip)

<G'piv) = F'piv) in Ta by the assumed property of G.

(2) Let p<v<a with v^p and pip)<piv) in P. Then F'p(p)EAr

so that F'piv) =hiAv,v)> F'pip) in Ta by Theorem 1.

(3) Let p<v<a with v^p and pip)>piv) in P. Suppose it were

true that F'pip) <F'piv) in Ta. Let r be the first such ordinal v.

Then Pip)>pir) in P implies that pip)>piw) in P for every ir<r

for which p(t)>p(tt) in P. If w<p then F'piir)<F'pip) in Ta by

(1) and (2). If p<7r<p then by (1), F'piir)<F'pip) in Ta. Up<ir<T

and 7T^p then by the minimality of t, F'piir) <F'pip) in Pa. Thus for

every f(~Ar we have F'pip) >f in P„ so that by Theorem 1, F'pip)

>A(-4T, t)= F'pir) in Pa, contrary to our supposition. So, for p<v<cr

with v^p and pip)>piv) in P, we have F'pip)>F'piv) in Pa, which

completes the proof of Theorem 2.

For each a G Ora we say that a totally ordered set T is ^-universal

if every totally ordered set of cardinality N« has an embedding in T.

If in Theorem 2 we take P to be any totally ordered set of cardinal-

ity fc$a and set 0=p and <r=coa, we obtain immediately the theorem

of N. Cuesta Dutari [2, p. 243, Theorem 15]: For each aÇ^On, Tais

an ^„-universal totally ordered set of cardinality ^2K«; if a = 0 or if

the General Continuum Hypothesis holds then Ta has cardinality &a.

This theorem has also been obtained for nonlimit cardinals fc$a by

W. Sierpiñski [6, p. 62, Theorem 3], using a theorem due to F. Haus-

dorff [3, pp. 181-182 ] ; the method of proof could be extended to regu-

lar cardinals but not to singular cardinals.

Suppose that P is a partially ordered set of cardinality N« having

distinct noncomparable elements a and b. If we impose on P a well-

ordering, P= {pip): p<coa}, in which p(0) =b and p(l) =a, and if we

set 0=p and o-=coa, then Theorem 2 yields immediately the theorem

of E. Szpilrajn [7]: If P is a partially ordered set having distinct non-

comparable elements a and b, then there exists a totally ordered extension

of P in which a<b.

2. Universal infinite partially ordered sets. If P and Q are partially

ordered sets, a bi-unique function F: P—>Q is called an embedding of
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P in Q if for every two elements a and b of P, a<b in P if and only

if F'a <F'b in Q.
Let P be a partially ordered set. A set K of totally ordered exten-

sions of P is said to realize P if for any two elements a and b of P,

a<b in P if and only if a<& in every member of X. By the theorem

of E. Szpilrajn [7], the set of all totally ordered extensions of P

realizes P. Thus, among such realizing sets K there will be one of

minimal cardinality ( = 1). B. Dushnik and E. W. Miller [l] call this

minimal cardinal the dimension of P and prove the following state-

ments:

(*) Every infinite partially ordered set has a dimension less than

or equal to its cardinality.

(**) If a partially ordered set P has an embedding in a partially

ordered set Q, then dimension P^ dimension Q.

(***) For aEOn and any cardinal m satisfying 0<m^N„, there

exists a partially ordered set of cardinality Na and dimension m.

For each aEOn, we say that a partially ordered set P is ^-uni-

versal if every partially ordered set of cardinality Na has an em-

bedding in P; we say that P is \&a-sub-universal if every partially

ordered set of cardinality N„ and dimension <Na has an embedding

in P.

Definition. Let aEOn. The set F„« clearly becomes a partially

ordered set, which we denote by P(T„a), if we order the functions

F: ûa->Ta as follows: for Fu F2E7>, Fi<F2 in P(7>) if and only

if for every p<wa, F{ p<F2 p in Ta. A function F: <ba—+Ta is said to

be of constant degree if there exists an ordinal 5<wa such that for

every p <o>a, v [F'p] = ô; this ordinal ô is denoted by A(F). A function

F: o)a—>Ta is said to be periodic if there exists an ordinal ir with

0<ir<ua such that for every p<w„, F'p = F'$(ir, p);3 the minimal

such ir is denoted by H(F). P(N«) will denote the partially ordered

suborder of P(7^«) consisting of the functions of constant degree.

Pa will denote the partially ordered suborder of P(N„) consisting of

the periodic functions of constant degree.

Theorem 3. Let aEOn. Then P(N«) is an ^-universal partially

ordered set of cardinality 2s« and dimension Na. Pa is an Na-sw&-

universal partially ordered set of cardinality ^2M<* for which

lim {m:tn<Na} ^dimension Pa^Na; if a = 0 or if the General Con-

tinuum Hypothesis holds, then Pa has cardinality Na.

' If m and v are ordinals with n>0, then there exist unique ordinals &(ji, v) and

$(/j, c) with©(u, v) ácandíO^, v) </usuch that v has the representation: ü=/iX8(|i,í)

+*0*, ")•
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Proof. (1) P(N„) = U{S(5): 5<«a}, where B(5) = {F: FEPii*a)
and A(F) = S} and the P(5) are disjoint, so that |P(K«)|
= E{|^(S)|: S<wa}. Now |5(5)| =2l5lx«a = 2«a for S>0, so that

|P(««)|=2«<».
(2) Pa = U{5(5, t): 5<coa, ir<co„}, where Bib, ir) = {F: F^Pa,

A(F)=5, and 11(F) =ir} and the P(5, it) are disjoint, so that

l-P-l = Z{|5(§, t)| :«<««, 7T<wa}. Now |5(«, x)| «2','XW 3Í2*«,
so that | P« | S2*». If a = 0 or if the General Continuum Hypothesis

holds, then |S(5, ir)| ^K« and we obtain \Pa\ = Na.

(3) Let P be any partially ordered set of cardinality Ka with an

imposed well-ordering, P = {pip) : p <wa}. Yet K be a realizing set of

totally ordered extensions of P with \k\ = dimension P so that we

may write K= {Tiv): v<%}, where f is the initial ordinal of dimen-

sion P and f^Wa by (*). For v<Ç, define Giv): Tiv)-+Ta tobe

the function F of Theorem 2 for the totally ordered set Tiv)

= {pip): p<ua\, taking 0=p and o-=o»a. If f<Wa, define Giv)

= G[$(f, v)] for f ^v <wa. For each p<<aa we define F(p): <¡>a—*Ta by

setting FÍp)'v = Giv)'pÍp) for each z»<coa. Finally we define F:

P—>P(Pf«) by setting F'pip) = F(ju) for each p<wa. By the assumed

property of .fiT and the above constructions, F is an embedding of P

in P(JK„); furthermore, if dimension P<Ka, then J"<coa and Pis an

embedding of P in Ptt.

(4) By (**), (***), and step (3) above, it remains only to exhibit a

set of fc$a totally ordered extensions of P(Ka) which realizes P(tëa).

We define totally ordered extensions Lip), p<wa, of Pitt«) as fol-

lows. For distinct elements Pi and Ps of P(Ka) we set Fi<F2 in

Lip) if and only if:

(a) F{p<F{p in Ta or,

(b) F{p = Flp and Fi'j»> F2/iz' in Ta for the first ordinal v <wa for

which F'iV^Fi'v.

Each Lip) is easily seen to be a totally ordered extension of

Pitta). To show that {L(p): ii<o»a} realizes P(Ka), we need only

consider non comparable elements of Pit&a). Let Pi and F2 be distinct

noncomparable elements of P(K„). Since Fi and F2 are distinct,

there exists a first ordinal p<«a such that Fíp^Fíp, and we may

assume that F{p<F{p in Ta so that Fi<Fs in Lip). Since Fi and P2

are noncomparable in P(Na), there exists an ordinal o-<coa with

ajLp for which F/v^Fla in T„. If F{*>Fi* in P„, then Fi>P2
in Lio-). If Fi'ir = F2'ir, then, since p is the first ordinal v <wa for which

Flvr^Flv and F{p<Fip in Pa, we again have Fi>Pj in L(tr). Thus

(L(/x): ju<wa} realizes P(ltfa), completing the proof of Theorem 3.

Since a totally ordered set is a partially ordered set of dimension 1,
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Theorem 3 is a generalization of the theorem of N. Cuesta Dutari

[2, p. 243, Theorem 15]. We also note that step (4) of the proof of

Theorem 3 is a direct generalization of the corresponding step given

by H. Komm [4, pp. 510-511] in his proof of essentially the same

theorem for the case Na = No.

Theorem 4. If\ = 0,or if the General Continuum Hypothesis holds

and A is the limit of a denumerable increasing sequence of smaller ordi-

nals, then Px is an ^-universal partially ordered set of cardinality and

dimension Nx.

Proof. (1) P\ has cardinality and dimension Nx by Theorem 3.

(2) Let P be any partially ordered set of cardinality Nx with an

imposed well-ordering, P={p(p): p<coa}. We define subsets P(n)

and P„ of P for each «<ü)0 as follows. If A=0, P(n) = {p(n)\. If

A>0, let A = lim |A(«): «<w0}, where A(«) <A(«+1) for each «<co0,

so that wx(B) <wx(n+i) and coxco+i <ü>x(„+n+i for each « <co0 and

o)x = lim{cox(„): w<w0} =lim{wx(»)+i: w<co0}. We set P(0)

= {p(p): p<cox(o).}; for 0<«<w0 we set P(n) = {p(p): wx(n-i) up

<cox(n)}. For every value of A we set P„ = U{P(r): r%n) ; we note

thatP = U{P(«):«<w0}.

(3) For each «<o>„, define W(n) = {f: fET?n) and v[f'P(p)]=P
for each p(p)EP(n)}. If A = 0, |W(«)|=2n and we may write

W(n) = {f(n, p): p<2n} with the convention that /(«, p)'p(n)

</(«, p + l)'p(«) in To for p + l<2". If A>0, \W(n)\ -..Q{2I»I:
p(p)EP(n)\=2<n\ where <«>=Z{|p|: p(p)EP(n)} =NX(n) so

that I W(»)| =Nx(n)+i; thus we may well-order W(n) and write

W(n) = {/(«, p) : p <wx(„)+i}.

(4) We define functions g(«, f): P(n)—>T\ for each «<w0 and for

each f <o3\ as follows:

(a) Suppose that A =0. We set g(0, f) =/(0, 0) for every f <o>0. For

0<«<«o and f<w0, define f(«) =$(2"("+1»2, f) and f(«, «)

= 0[2"(»-rJ/2, f(w)]j so that f(«)<2"<"+1»2 and f(«) = 2"<"-1>'2

Xf(«,   n)+r  with   r<2n^-1)l2  and   f(«,   «)<2n;   we  set  g(«,   f)

-/[»• r(«, »)]•
(b) Suppose that A>0. We set g(0, f) =/[0, f(0)] for every

f<cox, where f(0) = $(<ox«»+i» f). For 0<«<w0 and f<cox, define

f(») =$(wx(»)+i, f) and f(«, «) =©[wx<n-i)+i, f(«)], so that f(«)
<wx(»)+i and f(«) =wx(»_i)+iXf(», «)+p with p<wx(n-i)+i and

f («, «) <wx(n)+i; we set g(«, f) =/[«, T(«, «) ].
(5) We show by induction on « that if «<co0 and G: Pn—>7\ is any

function such that for each p(p) EPn, V [G'p(p) ] =p, then there exists

an ordinal 7(G) <wx such that G = \J{g[r, y(G)]: r^n}. If A = 0,

7(G) can be taken <2n<"+1»2; if A>0, 7(G) can be taken <wx(»)+i.
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This statement is clearly true for « = 0; let 0<«<w0 and assume

that the statement holds for » —1. Define H = G\Pn-i. Then for each

p(p)EPn-i, r¡[H'p(p)] =p so that by our inductive assumption, there

exists a 7(H); if A = 0, y(H) <2n<-"-1)12; if A>0, y(H) <«x(„_i)+i; we

have H=\J{g[r, y(H)]: r<n). Now G|P(w) is a function G|P(m):

P(«)->Tx such that for each p(p)EP(n), r)[G\ P(n)'p(p)]=p so that

there exists a f<wx for which G\P(n)=f(n, f); if A = 0, f<2n; if
A>0, f <o>x(n)+i. We define an ordinal 7 as follows: if 7 = 0,7 = 2n(n-1)/2

Xr+7(iO;ifA>0,7=cox(„-i)+iXf+7(-ff).ThenforA=01A<2«(»+1»2,
while for A>0, y'<«x<»)+i- Clearly, for r<«, g(r, 7)=g[r, y(H)],

while g(«, 7) =/(«, f). Thus G = U{g(r, 7): r%.n\ and we may take

7(G) =7.
(6) Now, depending on the order relations in P, we define functions

k(n, f) : P(n)—>T\ for every n <co0 and every f <wx by induction on «.

Let «<wo and f <cox and suppose that we have defined functions

k(r, f) : P(r)—*T\ for every r <« in such a manner that for each r <«

and each p(p)EP(r), i][k(r, f)'p(p)]=p, and that \i\k(r, f): r<«}
generates a totally ordered extension of P„_i (where by convention

we take P_i to be the void set). If U {k(r, f) : r <«} Ug(«, f) generates

a totally ordered extension of P„ we set k(n, f) =g(«, f); otherwise

we set k(n, f) = F[U {k(r, f) : r <«}, Q(n) ], the function of Theorem 2

for the present partially ordered set P, where fi(«) =w + l ifA=0 and

fi(«) =co\(„) if A>0. By induction, if U{g(r, f): r^n] generates a

totally ordered extension of P„, then k(r, f) =g(r, f) for every r^n.

Also by induction, for each f<wx, U{&(«, f): «<co0} generates a

totally ordered extension of P.

(7) We define functions F(p): ü\-^T\ for each p<cox by setting

F(p)'Ç=k(n, t)'p(p) for each f <wx, where « is the integer such that

p(p)EP(n). By (4) and (6), each F(p)EPx and A[F(p)]=p. We de-

fine the desired function F: P—*P\ by setting F'p(p) =F(p) for each

p <cox. By the last remark in (6), we need only check that F preserves

the noncomparabilities in P.

(8) Let «<w0 and let G: P„—»7\ be any function which generates

a totally ordered extension of P„ in such a manner that for each

p(p)EPn, i)[G'p(p)] =p. By (5), there exists an ordinal 7(G) <wxsuch

that G = U {g[r, 7(G)]: r¿n}. But by the next to last sentence of (6),

k[r,y(G)]=g[r,y(G)] for rg«, so that G = U {k[r, y(G) ]:r^n). But

now any noncomparability in P can be realized by the extensions

U {k [«, 7(Gi) ] : « <coo} and U {k [«, 7(G2) ] : « <co0} of two such func-

tions Gi and G2 by Theorem 2 and the theorem of E. Szpilrajn [7].

Thus F is the desired embedding for Theorem 4.

Theorem 4 with A = 0 has previously been obtained by A. Mostow-

ski [5]. We could, of course, perform a construction analogous to that
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in Theorem 4 for any limit cardinal, but we could not make the state-

ment in step (5) of the proof once ra had reached w0. Step (5) was

crucial in proving step (8), which assures us that the function F is

actually an embedding. For nonlimit cardinals, Theorem 3 is the best

result the author has been able to obtain.
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