UNIVERSAL INFINITE PARTIALLY ORDERED SETS
JOHN B. JOHNSTON

Introduction. The purpose of this paper is to construct for each
infinite cardinal N\ an N-universal partially ordered set in which
every partially ordered set of cardinality 8 can be embedded. An
N-universal partially ordered set of cardinality 28 is constructed
for every infinite cardinal N. Furthermore, an N-universal partially
ordered set of cardinality N is constructed for every cardinal N
which is the sum of denumerably many smaller cardinals. The exist-
ence for an arbitrary cardinal N of an N-universal partially ordered
set of cardinality N is left an open question and appears to be a
difficult problem.

The ordering relation “ <” in a partially ordered set is understood
to be transitive, nonreflexive, and nonsymmetric. The Axiom of
Choice will be assumed throughout this paper. The General Con-
tinuum Hypothesis will be explicitly mentioned when it is used.

1. Totally ordered extensions of partially ordered sets.

DEFINITION:! Let « €0n. If the functions f: @,—2 are ordered ac-
cording to first differences, the set 2°« becomes a totally ordered set
which we denote by T(2%). We shall call a function f: &,—2 an
a-rational if there exists an ordinal 5(f) <w., necessarily unique, such
that f(f) =1 while f/u=0 for 7(f) <p <w.. In the remainder of this
paper 5 will be used exclusively to denote this “terminating” ordinal
of the a-rationals. We denote by T, the totally ordered suborder of
T'(2°«) consisting of the a-rationals.

THEOREM 1. Let aEO0n. T, is a totally ordered set of cardinality
<M, Let p<w, and let A be any subset of T. such that for every
FEA,n(f) <p. Then there exists a (unique) minimal element h(A, p) ETa
having the properties that n[h(A, p) | =p and h(4, p)>f in T« for every
fEA. If gE€T, with 9(g) <p and g>f in T, for every fCA, then
g>h(A, p) in To If =0 or if the General Continuum Hypothesis
holds, T« has cardinality N..
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1 On denotes the class of ordinals. If u is an ordinal, & denotes the class of ordinals
less than u. To show that a function F has a set R for its domain and has its range in a
set S, we write F: R—S. For particular sets R and S, the set of all functions F: R—S
is denoted by SE. The image of an element ¢ by a function F is denoted by Fa.
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Proor. (1) T.=U{B(@): 11<wa}, where B(p) = {f: fET, and
7(f) =n} and the B(x) are disjoint, so that | T.,I =21 | B(n)| N <Wa } .
Now IB(n)l =211 <28 from which we infer that | T..I <Ma, If
a=0 or if the General Continuum Hypothesis holds, then [B(n)|
<N., and we obtain | 7| =N..

(2) Let p and A4 satisfy the hypothesis of the theorem. We take
for k(A, p) the unique function k: &,—2 defined inductively by:

(@) for w<p, k’u=1 if and only if there exists an fEA such that
fla=F|@ and fu=1;

(b) ¥p=1 and k’'u=0 for p <p <w,.

Clearly, k€T, and n(k) =p.

(3) Let fEA. Since n(f) <p=n(k), there exists a first ordinal ¢ <p
for which f'e #k'a whilef| ¢ =k| . If it were true that f'o=1>0=F'c,
then necessarily ¢ <p and we would have a contradiction of (2). Thus
fle=0<1=Fo and f<kin T.,.

(4) Let g&T, with 9(g) =7 Zp=n(k) such that g<k in T,. Then
there exits a first ordinal ¢ <p such that g'e=0<1=~Fc while
g|3=Fk| . Note that not both ¢ =p and 7=p.

(a) Suppose that ¢ <p. Then by (2), #'c=1 implies that there
exists an fEA such that f|¢=k|5=g|c while fo=Fko=1>0=g'c.
For this fEA we have f>g in T.,.

(b) Suppose that 1< =p. Then by (2), ¥'r=g'r=1 implies that
there exists an fE 4 such that f| 7 =k|7=g|7 while f'r=kr=g'r=1.
Since 5(g) =7, we have g=<f in T, for this particular f.

The minimality of k(4, p) =k follows from (a) with r=p. For
gE T, with 9(g) <p and g>f in T, for every fE 4, the fact that g>k
in T, follows from (b) and (a) with 7 <p, since 5(g) <p implies that
g#k. This completes the proof of Theorem 1.

If P is a partially ordered set and T a totally ordered set, a bi-
unique function F: P—T is said to generate a totally ordered extension
of P if for any two elements a and b of P, a<b in P implies that
F'a<F'b in T. The totally ordered extension generated is the set of
elements of P together with the order relations transferred from T
back to P by the inverse of F. If P is itself a totally ordered set, then
P is similar to the totally ordered set { F'a: a € P} and F is called an
embedding of Pin T.

THEOREM 2. Let aEO0n and let P be any partially ordered set of
cardinality N, with an imposed well-ordering, P={p(u): p<wa}. For
¥ Swa, define P,={p(u): p.<v}. Let 0=p <0 =w, and suppose that G:

2If Fis a function and R is a subset of its domain, F|R denotes the function
Frestricted to the domain R.
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P,—T, is any function which generates a totally ordered extemsion of
P, in such a manner that for each p(u) € P,, 1[G'p(u) | =u. By induction
there exists a unique function F: P,—T, such that F lP,,=G while
F'p(v) =h(A,, ) for pSv<a, where A, = { F'p(u): u<v and p(u) <p(»)
in P}. We conclude that this function F generates a totally ordered ex-
tension of P, in such a manner that for each p(u) EP,, n[F'p(u)]=p.
We denote the function F|(P,—P,) by F(G, a).

ProoF. (1) Let g, v<p with p(u) <p(v) in P. Then F'p(u) =G'p(u)
<G'p(¥)=F'p®) in T, by the assumed property of G.

(2) Let u<v<o with »=p and p(u) <p(») in P. Then F'p(u)EA,
so that F'p(v) =h(4,, v) > F'p(u) in T, by Theorem 1.

(3) Let u<v<eo with »=p and p(u) >p(») in P. Suppose it were
true that F'p(u) <F'p(») in T,. Let 7 be the first such ordinal ».
Then p(u)>p(r) in P implies that p(u) >p(w) in P for every w <7
for which p(r)>p(r) in P. If #<p then F'p(w) <F'p(p) in T, by
(1) and (2). If u<w<p then by (1), F'p(m) <F'p(u) in To. f p<w <7
and 7 2p then by the minimality of 7, F/p(7) < F/p(u) in T,. Thus for
every fEA, we have F'p(u)>f in T, so that by Theorem 1, F'p(u)
>h(A,, 1) =F'p(r) in T,, contrary to our supposition. So, for up <v <o
with »=p and p(k) > p(») in P, we have F'p(u) > F'p(v) in T,, which
completes the proof of Theorem 2.

For each a €0n we say that a totally ordered set T is Nq-universal
if every totally ordered set of cardinality N, has an embedding in T.

If in Theorem 2 we take P to be any totally ordered set of cardinal-
ity N, and set 0=p and 6 =w,., we obtain immediately the theorem
of N. Cuesta Dutari [2, p. 243, Theorem 15]: For each a€O0n, Ta is
an N,-universal totally ordered set of cardinality <2«; if a=0 or if
the General Continuum Hypothesis holds then T has cardinality Na.
This theorem has also been obtained for nonlimit cardinals N, by
W. Sierpifiski [6, p. 62, Theorem 3], using a theorem due to F. Haus-
dorff [3, pp. 181-182]; the method of proof could be extended to regu-
lar cardinals but not to singular cardinals.

Suppose that P is a partially ordered set of cardinality N, having
distinct noncomparable elements @ and b. If we impose on P a well-
ordering, P= {p(u): u <wa}, in which p(0) =b and p(1) =a, and if we
set 0=p and ¢ =w,, then Theorem 2 yields immediately the theorem
of E. Szpilrajn [7]: If P is a partially ordered set having distinct non-
comparable elements a and b, then there exists a totally ordered extension
of P in which a <b.

2. Universal infinite partially ordered sets. If P and Q are partially
ordered sets, a bi-unique function F: P—Q is called an embedding of
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P in Q if for every two elements @ and b of P, ¢ <b in P if and only
if FFa<F'bin Q.

Let P be a partially ordered set. A set K of totally ordered exten-
sions of P is said to realize P if for any two elements ¢ and b of P,
a<bin P if and only if ¢ <b in every member of K. By the theorem
of E. Szpilrajn [7], the set of all totally ordered extensions of P
realizes P. Thus, among such realizing sets K there will be one of
minimal cardinality (=1). B. Dushnik and E. W. Miller [1] call this
minimal cardinal the dimension of P and prove the following state-
ments:

(*) Every infinite partially ordered set has a dimension less than
or equal to its cardinality.

(**) If a partially ordered set P has an embedding in a partially
ordered set Q, then dimension P <dimension Q.

(***) For «€0n and any cardinal m satisfying 0 <m<N,, there
exists a partially ordered set of cardinality N, and dimension m.

For each «€0n, we say that a partially ordered set P is Ny-uni-
versal if every partially ordered set of cardinality N, has an em-
bedding in P; we say that P is N,-sub-universal if every partially
ordered set of cardinality 8N, and dimension <8, has an embedding
in P.

DEFINITION. Let aE€O0n. The set Tee clearly becomes a partially
ordered set, which we denote by P(T%), if we order the functions
F: @,—T, as follows: for Fy, FoET%, F;<F, in P(T%) if and only
if for every p<ws, F{u<Fiu in T, A function F: @,—7T, is said to
be of constant degree if there exists an ordinal 8 <w, such that for
every u <wa, n[F'u]=38; this ordinal § is denoted by A(F). A function
F: &,—T, is said to be periodic if there exists an ordinal = with
0 <7 <w, such that for every u<w,, F'u=F'®(r, u);# the minimal
such 7 is denoted by [J(F). P(N.) will denote the partially ordered
suborder of P(T%) consisting of the functions of constant degree.
P, will denote the partially ordered suborder of P(N.) consisting of
the periodic functions of constant degree.

THEOREM 3. Let a€O0n. Then P(N.) is an N,-universal partially
ordered set of cardinality 28« and dimension Na. Py is an Ny-sub-
universal partially ordered set of cardinality =28« for which
lim {m:m<N,} Sdimension Po<Na;if a=0 or if the General Con-
tinuum Hypothesis holds, then P, has cardinality N..

3 If u and » are ordinals with x>0, then there exist unique ordinals @(u, ») and
& (i, v) with O (u, v) Svand ®(u, ») <u such that v has the representation: » =u X0 (u, )
+&(u, v).
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ProoF. (1) P(N.) =U{B(8): §<w.}, where B(3)={F: FEP(N.)
and A(F)=5} and the B(3) are disjoint, so that |P(N.)|
=Y {|B@®)|: 6<wa}. Now | B(5)| =281x®=2%a for §>0, so that
| P(R.)| =2%.

2) P¢=U{B(5, m): 6 <wa, 7r<w.,}, where B(d, 1r)={F: FePp,,
A(F)=%, and JJ(F)==} and the B(5, 7) are disjoint, so that
| P| = 2 {| B3, 7)|: 6 <way, 7 <wa}. Now | B(3, )| =218Ixirl < 2R,
so that | P,| <2 If =0 or if the General Continuum Hypothesis
holds, then | B(3, 7)| <N, and we obtain | P,| =N..

(3) Let P be any partially ordered set of cardinality N, with an
imposed well-ordering, P = {p(u): p <w. } . Let K be a realizing set of
totally ordered extensions of P with | K| =dimension P so that we
may write K= {T(): v<{ } , where { is the initial ordinal of dimen-
sion P and {Sw. by (*). For v<{, define G(»): T(v)—>T, tobe
the function F of Theorem 2 for the totally ordered set T(»)
={p(): u<w.}, taking 0=p and o=w. If {<w., define G()
=G[®(¢, )] for { v <w.. For each p <w, we define F(u): @.—T. by
setting F(u)v=G@)'p(u) for each v<w, Finally we define F:
P—P(T%) by setting F'p(u) = F(u) for each u <w,. By the assumed
property of K and the above constructions, F is an embedding of P
in P(N,); furthermore, if dimension P <N,, then { <w, and F is an
embedding of P in P,.

(4) By (**), (***), and step (3) above, it remains only to exhibit a
set of N, totally ordered extensions of P(N,) which realizes P(N.).
We define totally ordered extensions L(u), u<w,, of P(N,) as fol-
lows. For distinct elements F, and F; of P(N,) we set Fi<F, in
L(u) if and only if:

(@) Flu<Fiuin T, or,

(b) Fiu=F{u and F{v> F;v in T, for the first ordinal » <w, for
which Fiy# Fi».

Each L(u) is easily seen to be a totally ordered extension of
P(N.). To show that {L(u): u<w.} realizes P(N.), we need only
consider noncomparable elements of P(N.). Let F; and F; be distinct
noncomparable elements of P(N,). Since F;, and F, are distinct,
there exists a first ordinal p <w, such that F{p#F;p, and we may
assume that F{ p<Fip in T, so that F1<F; in L(p). Since F; and F,
are noncomparable in P(N,), there exists an ordinal ¢ <w, with
a#p for which F/v 2 Fjo in T.. If F{'¢> Fjv in T,, then F,>F,
in L(¢). If F{'v = F{v, then, since p is the first ordinal » <w, for which
F{v#Fiv and F/p<Fjp in T., we again have F1> F; in L(¢). Thus
{L(p): p<w.} realizes P(N.), completing the proof of Theorem 3.

Since a totally ordered set is a partially ordered set of dimension 1,
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Theorem 3 is a generalization of the theorem of N. Cuesta Dutari
[2, p. 243, Theorem 15]. We also note that step (4) of the proof of
Theorem 3 is a direct generalization of the corresponding step given
by H. Komm [4, pp. 510-511] in his proof of essentially the same
theorem for the case N, =N,.

THEOREM 4. If N=0, or if the General Continuum Hypothesis holds
and \ is the limit of a denumerable increasing sequence of smaller ordi-
nals, then Py is an Ny-universal partially ordered set of cardinality and
dimension N,.

ProoF. (1) P, has cardinality and dimension N\ by Theorem 3.

(2) Let P be any partially ordered set of cardinality N, with an
imposed well-ordering, P = {p(u): ,u<wa}. We define subsets P(n)
and P, of P for each n<w, as follows. If A=0, P(n) = {p(n)}. If
A>0, let A=lim {\(n): n<wo}, where A(n) <A(rn+1) for each n# <w,,
s0 that wim <Wrmiy and wimy <wrmin41 for each n <wp and
or=lim{wrm: n<wo}=lim{wrmu: n<w}. We set P(0)
={P(}l): u<w>‘(ol,}; for 0<n<w, we set P(n)={p(u): Or(n—1) S 4
<w;\(,.)}. For every value of N we set P,.=U{P(r): r§n}; we note
that P=U{P(n): n<wo}.

(3) For each n<w,, define W(n)={f: FETI™ and n[f'p(u)] =u
for each p(y)EP(n)}. If A=0, IW(n)I =2" and we may write
W(n)={f(n, p): p<2~} with the convention that f(n, u)'p(n)
<f(n, p+1)'p(n) in T, for p+1<2» If \>0, | W(n)| =T]{2'»:
pW)EPm)} =2", where (n)= 2 {|u|: pWEP®)} =Rm so
that IW(n)I =Nrm41; thus we may well-order W(n) and write
W(n) = {f(n, p): p<wrny1}.

(4) We define functions gz, {): P(n)—T) for each n <wy and for
each { <w, as follows:

(a) Suppose that A =0. We set g(0, {) =f(0, 0) for every { <w,. For
0<n<wy and {<w,, define {(n)=P2"=+D/2 &) and ¢(n, n)
=0[2#=-Di2, ¢(n)], so that {(n)<2r®+Diz and {(n)=2n—DI/2
X{(n, n)4r with r<2*»=D/2 and {(n, n)<2*; we set g(n, {)
=f[n, {(n, m)].

(b) Suppose that A>0. We set g(0, ¢)=f[0, ¢£(0)] for every
¢ <wy, where {(0) =P(wrco)41, ). For 0<n<w, and {<w,, define
£(n) =B(@rm+1, §) and §(n, 1) =0[wrm-11, {(#)], so that {(n)
<wam4r and {(#) =wrp-y1X$(n, n)+p with p<wrmp-nsq and
§(n, n) <wrm1; we set g(n, §) =fln, {(n, n)].

(5) We show by induction on # that if # <w, and G: P,—T) is any
function such that for each p(u) € P,, 7[G'p(1) ] =p, then there exists
an ordinal v(G) <wx such that G=U{g[r, v(G)]: r<n}. If A=0,
v(G) can be taken <27®+D/2:if X >0, v(G) can be taken <wxny41.
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This statement is clearly true for n=0; let 0 <7 <w, and assume
that the statement holds for #—1. Define H =G| P,_1. Then for each
p () EPay, n[H'p(u) ] =u so that by our inductive assumption, there
exists a y(H); if N=0, v(H) <2"®=0/2; if x>0, v(H) <wrg-1y41; we
have H=U{g[r, v(H)]: r<n}. Now G|P(n) is a function GlP(n):
P(n)—T), such that for each p(u) EP(n), n[Gl P(n)'p(u) ] =nu so that
there exists a { <w) for which GIP(n) =f(n, {); if X\=0, {<27; if
A>0, { <wamy41. We define an ordinal  as follows: if y =0, ¢ = 2n(=—D/2
X¢E+vH);iEN> 0,7 =wrmn—n+1 X +v(H). Then for A =0, < 2nn+D/2)
while for A\>0, v <wim41. Clearly, for 7<=, g(r, v)=glr, v(H)],
while g(#, v) =f(n, {). Thus G=U{g(r, v): r<n} and we may take
v(G) =v.

(6) Now, depending on the order relations in P, we define functions
k(n, {): P(n)—T) for every n <w, and every { <w) by induction on #.
Let #n <wy and ¢ <wy and suppose that we have defined functions
k(r, ¢): P(r)—>T) for every r <n in such a manner that for each r <n
and each p(u) EP(r), nlk(r, {)'p(w)]=n, and that U{k(r, ): r<n}
generates a totally ordered extension of P,_; (where by convention
we take P_; to be the void set). If U{k(r, {): r<n} Ug(n, ) generates
a totally ordered extension of P, we set k(n, {) =g(n, {); otherwise
we set k(n, {) =F[U { k(r,):r<n } , Q(n)], the function of Theorem 2
for the present partially ordered set P, where Q(n) =z+1 if A\=0 and
Q(n) =wr@m if A>0. By induction, if U{g(r, $): r_S_n} generates a
totally ordered extension of P,, then k(r, {) =g(r, ¢) for every r <n.
Also by induction, for each {<wx, U{k(n, {): n<w,} generates a
totally ordered extension of P.

(7) We define functions F(u): ax—T» for each u<w) by setting
F(u)'t =k(n, $)'p(u) for each { <w,, where # is the integer such that
p(w) EP(n). By (4) and (6), each F(u) EP) and A[F(u)]=u. We de-
fine the desired function F: P—P, by setting F'p(u) = F(u) for each
1 <w). By the last remark in (6), we need only check that F preserves
the noncomparabilities in P,

(8) Let #n<w, and let G: P,—T) be any function which generates
a totally ordered extension of P, in such a manner that for each
p () EP,, n[G'p(u) | =p. By (5), there exists an ordinal v(G) <w such
that G=U{glr,y(G)]:r<n } But by the next to last sentence of (6),
klr, v(G)]=glr, v(G)] for r <u, so that G=U{k[r,v(G)]:#<n}. But
now any noncomparability in P can be realized by the extensions
U{k[n, ¥(G)]: n<wo} and U{k[n, v(G;)]: n <wo} of two such func-
tions G, and G; by Theorem 2 and the theorem of E. Szpilrajn [7].
Thus F is the desired embedding for Theorem 4.

Theorem 4 with A =0 has previously been obtained by A. Mostow-
ski [5]. We could, of course, perform a construction analogous to that



514 J. B. JOHNSTON

in Theorem 4 for any limit cardinal, but we could not make the state-
ment in step (5) of the proof once # had reached w,. Step (5) was
crucial in proving step (8), which assures us that the function F is
actually an embedding. For nonlimit cardinals, Theorem 3 is the best
result the author has been able to obtain.
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